Solveeit Logo

Question

Question: If \(\cot \theta + \cot \left( {\dfrac{\pi }{4} + \theta } \right) = 2\), then the general value of ...

If cotθ+cot(π4+θ)=2\cot \theta + \cot \left( {\dfrac{\pi }{4} + \theta } \right) = 2, then the general value of θ\theta is:
A. 2nπ±π62n\pi \pm \dfrac{\pi }{6}
B. 2nπ±π32n\pi \pm \dfrac{\pi }{3}
C. nπ±π3n\pi \pm \dfrac{\pi }{3}
D. nπ±π6n\pi \pm \dfrac{\pi }{6}

Explanation

Solution

The given question involves solving a trigonometric equation and finding the general value of angle θ\theta that satisfies the given equation and lies in the range of [0,2π][0,2\pi ]. There can be various methods to solve a specific trigonometric equation. For solving such questions, we need to have knowledge of basic trigonometric formulae and identities. We will use the compound angle formula of cotangent cot(A+B)=cotAcotB1cotA+cotB\cot \left( {A + B} \right) = \dfrac{{\cot A\cot B - 1}}{{\cot A + \cot B}} and then simplify the equation to find the general values for the angle θ\theta .

Complete step by step answer:
In the given problem, we have to solve the trigonometric equation cotθ+cot(π4+θ)=2\cot \theta + \cot \left( {\dfrac{\pi }{4} + \theta } \right) = 2 and find the values of θ\theta that satisfy the given equation.
So, In order to solve the given trigonometric equationcotθ+cot(π4+θ)=2\cot \theta + \cot \left( {\dfrac{\pi }{4} + \theta } \right) = 2 , we will open up the cotangent of the sum of two angles using the compound angle trigonometric formula cot(A+B)=cotAcotB1cotA+cotB\cot \left( {A + B} \right) = \dfrac{{\cot A\cot B - 1}}{{\cot A + \cot B}}.
So, we get, cotθ+cot(π4+θ)=2\cot \theta + \cot \left( {\dfrac{\pi }{4} + \theta } \right) = 2
cotθ+cot(π4)cotθ1cot(π4)+cotθ=2\Rightarrow \cot \theta + \dfrac{{\cot \left( {\dfrac{\pi }{4}} \right)\cot \theta - 1}}{{\cot \left( {\dfrac{\pi }{4}} \right) + \cot \theta }} = 2
Now, we know that the value of cot(π4)\cot \left( {\dfrac{\pi }{4}} \right) is one. So, we get,
cotθ+(1)cotθ1(1)+cotθ=2\Rightarrow \cot \theta + \dfrac{{\left( 1 \right)\cot \theta - 1}}{{\left( 1 \right) + \cot \theta }} = 2

Now, taking LCM of both the rational trigonometric expressions, we get,
cotθ(1+cotθ)+cotθ11+cotθ=2\Rightarrow \dfrac{{\cot \theta \left( {1 + \cot \theta } \right) + \cot \theta - 1}}{{1 + \cot \theta }} = 2
Opening brackets and simplifying the equation, we get,
cotθ+cot2θ+cotθ11+cotθ=2\Rightarrow \dfrac{{\cot \theta + {{\cot }^2}\theta + \cot \theta - 1}}{{1 + \cot \theta }} = 2
Cross multiplying the terms of the equation, we get,
cot2θ+2cotθ1=2(1+cotθ)\Rightarrow {\cot ^2}\theta + 2\cot \theta - 1 = 2\left( {1 + \cot \theta } \right)
cot2θ+2cotθ1=2+2cotθ\Rightarrow {\cot ^2}\theta + 2\cot \theta - 1 = 2 + 2\cot \theta
Shifting all the terms to the left side of the equation, we get,
cot2θ+2cotθ2cotθ21=0\Rightarrow {\cot ^2}\theta + 2\cot \theta - 2\cot \theta - 2 - 1 = 0
Cancelling the like terms with opposite signs, we get,
cot2θ3=0\Rightarrow {\cot ^2}\theta - 3 = 0

Now, we know that tangent and cotangent are reciprocal functions of each other. So, we get,
1tan2θ3=0\Rightarrow \dfrac{1}{{{{\tan }^2}\theta }} - 3 = 0
Shifting constant term to right side of the equation, we get,
1tan2θ=3\Rightarrow \dfrac{1}{{{{\tan }^2}\theta }} = 3
tan2θ=13\Rightarrow {\tan ^2}\theta = \dfrac{1}{3}
Now, we know the double angle formula of cosine cos2x=1tan2x1+tan2x\cos 2x = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}. So, we get,
cos2θ=1tan2θ1+tan2θ\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}
Substituting the value of tan2θ{\tan ^2}\theta , we have,
cos2θ=1(13)1+(13)\Rightarrow \cos 2\theta = \dfrac{{1 - \left( {\dfrac{1}{3}} \right)}}{{1 + \left( {\dfrac{1}{3}} \right)}}
cos2θ=(23)(43)\Rightarrow \cos 2\theta = \dfrac{{\left( {\dfrac{2}{3}} \right)}}{{\left( {\dfrac{4}{3}} \right)}}
Simplifying the expression,
cos2θ=12\Rightarrow \cos 2\theta = \dfrac{1}{2}

Now, we know that the value of cos(π3)=12\cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}. So, we get,
cos2θ=cosπ3\Rightarrow \cos 2\theta = \cos \dfrac{\pi }{3}
Now, we know that the general solution of equation cosx=cosα\cos x = \cos \alpha is x=2nπ±αx = 2n\pi \pm \alpha .
Hence, we get,
2θ=2nπ±(π3)\Rightarrow 2\theta = 2n\pi \pm \left( {\dfrac{\pi }{3}} \right)
On dividing both sides by 22, we get,
θ=nπ±(π6)\therefore \theta = n\pi \pm \left( {\dfrac{\pi }{6}} \right)

So, the correct answer is option D.

Note: The given trigonometric equation can also be solved by first converting the equation into tangent form using the trigonometric formula tanx=1cotx\tan x = \dfrac{1}{{\cot x}} and then solving further. We should remember the double angle formula of cosine and the compound angle formula for cotangent to solve the given question. One must have good grip over simplification rules in order to get to the required answer.