Solveeit Logo

Question

Question: If cot \(\sin\left( \theta + \frac{\pi}{4} \right) = \frac{1}{2\sqrt{2}}\)then \(R_{1} \rightarrow R...

If cot sin(θ+π4)=122\sin\left( \theta + \frac{\pi}{4} \right) = \frac{1}{2\sqrt{2}}then R1R1R3R_{1} \rightarrow R_{1} - R_{3}

A

sinθ=12\sin\theta = \frac{1}{2}

B

101011sin2θcos2θ1+4sin4θ=0\left| \begin{matrix} 1 & 0 & - 1 \\ 0 & 1 & - 1 \\ \sin^{2}\theta & \cos^{2}\theta & 1 + 4\sin 4\theta \end{matrix} \right| = 0

C

\Rightarrow

D

1+4sin4θ+cos2θ+sin2θ=01 + 4\sin 4\theta + \cos^{2}\theta + \sin^{2}\theta = 0

Answer

sinθ=12\sin\theta = \frac{1}{2}

Explanation

Solution

Given, cot =2(sa)(sc)ac= 2\sqrt{\frac{(s - a)(s - c)}{ac}}

(sa)(sc)ac+sbb(sc) (sa)ac\frac{\sqrt{(s - a)(s - c)}}{ac} + \frac{s - b}{b}\sqrt{\frac{(s - c)\ (s - a)}{ac}}

=2(sa)(sc)ac= 2\sqrt{\frac{(s - a)(s - c)}{ac}}=sb+sbb=2\frac{s}{b} + \frac{s - b}{b} = 2

a+c=2ba + c = 2b = a,b,ca,b,c.