Question
Mathematics Question on Inverse Trigonometric Functions
If cot(cos−1x)=sec(tan−1b2−a2a), then x is equal to
A
2b2−a2b
B
2b2−a2a
C
a2b2−a2
D
b2b2−a2
Answer
2b2−a2b
Explanation
Solution
We have, cot(cos−1x)=sec(tan−1b2−a2a) Let tan−1b2−a2a=θ ⇒tanθ=b2−a2a secθ=b2−a2b ∴cot(cos−1x)=b2−a2b ⇒cos−1x=cot−1(b2−a2b) Again, let cot−1(b2−a2b)=ϕ ⇒cotϕ=b2−a2b
⇒cosϕ=b2−a2b Now, cos−1x=ϕ ⇒x=cosϕ=2b2−a2b