Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

If cot(cos1x)=sec(tan1ab2a2)cot \left(cos^{-1}\, x\right) = sec \left(tan^{-1} \frac{a}{\sqrt{b^{2} - a^{2}}}\right), then xx is equal to

A

b2b2a2 \frac{b}{\sqrt{2b^{2} - a^{2}}}

B

a2b2a2 \frac{a}{\sqrt{2b^{2} - a^{2}}}

C

2b2a2a\frac{\sqrt{2b^{2} - a^{2}}}{a}

D

2b2a2b\frac{\sqrt{2b^{2} - a^{2}}}{ b}

Answer

b2b2a2 \frac{b}{\sqrt{2b^{2} - a^{2}}}

Explanation

Solution

We have, cot(cos1x)=sec(tan1ab2a2)cot \left(cos^{-1}\,x\right) = sec\left(tan^{-1} \frac{a}{\sqrt{b^{2}-a^{2}}}\right) Let tan1ab2a2=θtan^{-1} \frac{a}{\sqrt{b^{2}-a^{2}}} = \theta tanθ=ab2a2\Rightarrow tan\,\theta = \frac{a}{\sqrt{b^{2}-a^{2}}} secθ=bb2a2sec\,\theta =\frac{b}{\sqrt{b^{2}-a^{2}}} cot(cos1x)=bb2a2\therefore cot \left(cos^{-1} \,x\right) = \frac{b}{\sqrt{b^{2}-a^{2}}} cos1x=cot1(bb2a2)\Rightarrow cos^{-1}\,x = cot^{-1} \left(\frac{b}{\sqrt{b^{2}-a^{2}}}\right) Again, let cot1(bb2a2)=ϕcot^{-1} \left(\frac{b}{\sqrt{b^{2}-a^{2}}}\right) = \phi cotϕ=bb2a2\Rightarrow cot\,\phi = \frac{b}{\sqrt{b^{2}-a^{2}}} cosϕ=bb2a2\Rightarrow cos\,\phi = \frac{b}{\sqrt{b^{2}-a^{2}}} Now, cos1x=ϕcos^{-1}\, x = \phi x=cosϕ=b2b2a2\Rightarrow x = cos\,\phi = \frac{b}{\sqrt{2b^{2}-a^{2}}}