Solveeit Logo

Question

Question: If \(\cot \,B = \dfrac{{12}}{5}\), prove that \({\tan ^2}B - {\sin ^2}B = {\sin ^4}B{\sec ^2}B\)....

If cotB=125\cot \,B = \dfrac{{12}}{5}, prove that tan2Bsin2B=sin4Bsec2B{\tan ^2}B - {\sin ^2}B = {\sin ^4}B{\sec ^2}B.

Explanation

Solution

In this question we have to prove the left side of the equation equals the right side of the equation. We have cotB=125\cot \,B = \dfrac{{12}}{5}, by this value we can find the other trigonometric functions such as tanB,sinB,secB\tan B,\,\sin B,\,\sec B. We know that cot\cot is the reciprocal of tan\tan . Similarly, we can find sinB\sin Band secB\sec B.

Complete step by step answer:
We have, cotB=125\cot \,B = \dfrac{{12}}{5}
We know that Cotθ=baseperpendicularCot\theta = \dfrac{\text{base}}{\text{perpendicular}}
As, tanθ=1cotθ\tan \theta = \dfrac{1}{{\cot \theta }}
So, tanB=512\tan B = \dfrac{5}{{12}}
Now, we have to find the value of sinB\sin B and secB\sec B.
We know that
sinθ=perpendicularhypotenuse\sin \theta = \dfrac{\text{perpendicular}}{\text{hypotenuse}} and secθ=hypotenusebase\sec \theta = \dfrac{\text{hypotenuse}}{\text{base}}
So, we have to find the hypotenuse.

In a right- angled triangle,
(hypotenuse)2=(perpendicular)2+(base)2{\text{(hypotenuse)}^2} = {\text{(perpendicular)}^2} + {\text{(base)}^2}
We have, perpendicular=5perpendicular = 5 and base=12base = 12
Putting the value of perpendicularperpendicular and basebase. We get,
(hypotenuse)2=(5)2+(12)2\Rightarrow {\text{(hypotenuse)}^2} = {(5)^2} + {(12)^2}
(hypotenuse)2=25+144\Rightarrow {\text{(hypotenuse)}^2} = 25 + 144
(hypotenuse)2=169\Rightarrow {\text{(hypotenuse)}^2} = 169
(hypotenuse)2=169\Rightarrow {\text{(hypotenuse)}^2} = \sqrt {169}
hypotenuse=13\Rightarrow \text{hypotenuse} = 13
Therefore, sinB=513\sin B = \dfrac{5}{{13}} and secB=1312\sec B = \dfrac{{13}}{{12}}

Put the value of the trigonometric function in the given equation. We get,
tan2Bsin2B=sin4Bsec2B{\tan ^2}B - {\sin ^2}B = {\sin ^4}B{\sec ^2}B
(512)2+(513)2=(513)4(1312)2\Rightarrow {\left( {\dfrac{5}{{12}}} \right)^2} + {\left( {\dfrac{5}{{13}}} \right)^2} = {\left( {\dfrac{5}{{13}}} \right)^4}{\left( {\dfrac{{13}}{{12}}} \right)^2}
2514425169=62524336\dfrac{{25}}{{144}} - \dfrac{{25}}{{169}} = \dfrac{{625}}{{24336}}
Solving the left side of the equation. We get,
62524336=62524336\dfrac{{625}}{{24336}} = \dfrac{{625}}{{24336}}
Hence, the left side of the equation is equal to the right side of the equation.
Hence proved.

Note: We can also use trigonometric identities such as 1+tan2θ=sec2θ1 + {\tan ^2}\theta = {\sec ^2}\theta and sin2θcos2θ=1{\sin ^2}\theta - {\cos ^2}\theta = 1. To find the value of trigonometric function. As by tanB\tan B we can find the value of secB\sec B and by using secB\sec B we can find the value of cosB\cos B and by cosB\cos B we can find the value of sinB\sin B by using these trigonometric identities.