Solveeit Logo

Question

Question: If \(\cot B = \dfrac{{12}}{5}\) , prove that \({\tan ^2}B - {\sin ^2}B = {\sin ^4}B{\sec ^2}B\)...

If cotB=125\cot B = \dfrac{{12}}{5} , prove that tan2Bsin2B=sin4Bsec2B{\tan ^2}B - {\sin ^2}B = {\sin ^4}B{\sec ^2}B

Explanation

Solution

Use the identity, tanθ=1cotθ\tan \theta = \dfrac{1}{{\cot \theta }}and tanθ=PB\tan \theta = \dfrac{P}{B}where P is perpendicular and B is base, to find perpendicular and base. Then use Pythagoras theorem H2=P2+B2{H^2} = {P^2} + {B^2}
Where H is the hypotenuse, P is the perpendicular and B is the base.
Then use the identities, sinθ=PH\sin \theta = \dfrac{P}{H}and cosθ=BH\cos \theta = \dfrac{B}{H} and put the values in the equation to prove that LHS=RHS.

Complete step by step answer:

Given, cotB=125\cot B = \dfrac{{12}}{5}
Now we know that tanθ=1cotθ\tan \theta = \dfrac{1}{{\cot \theta }}
So tanB=1125=512\tan B = \dfrac{1}{{\dfrac{{12}}{5}}} = \dfrac{5}{{12}}
Now, we also that tanθ=PB\tan \theta = \dfrac{P}{B} , where P is perpendicular and B is the base of a triangle.
So P=55 and B=1212
Then we have to find the Hypotenuse of the triangle.

According to Pythagoras theorem,
In a right-angled triangle, the square of the longest side (hypotenuse) is equal to the sum of the squares of the two other sides. It is written as-
H2=P2+B2{H^2} = {P^2} + {B^2}
Where H is the hypotenuse, P is the perpendicular and B is the base.
On putting the values in the formula we get,
\Rightarrow H2=52+122{H^2} = {5^2} + {12^2}
On solving we get,
\Rightarrow H2=25+144{H^2} = 25 + 144
On adding we get,
\Rightarrow H2=169{H^2} = 169
H=169=13\Rightarrow H = \sqrt {169} = 13
So we know that sinθ=PH\sin \theta = \dfrac{P}{H} and secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }} and cosθ=BH\cos \theta = \dfrac{B}{H}
So secθ=HB\sec \theta = \dfrac{H}{B}
On putting values of P, H, and B we get,
sinB=513\Rightarrow \sin B = \dfrac{5}{{13}} and secB=1312\sec B = \dfrac{{13}}{{12}}
Now we have to prove tan2Bsin2B=sin4Bsec2B{\tan ^2}B - {\sin ^2}B = {\sin ^4}B{\sec ^2}B
On taking LHS and putting the required values we get,
tan2Bsin2B=(512)2(513)2\Rightarrow {\tan ^2}B - {\sin ^2}B = {\left( {\dfrac{5}{{12}}} \right)^2} - {\left( {\dfrac{5}{{13}}} \right)^2}
On taking 55 common, we get-
tan2Bsin2B=52[(112)2(113)2]\Rightarrow {\tan ^2}B - {\sin ^2}B = {5^2}\left[ {{{\left( {\dfrac{1}{{12}}} \right)}^2} - {{\left( {\dfrac{1}{{13}}} \right)}^2}} \right]
On simplifying we get,
tan2Bsin2B=25[11441169]\Rightarrow {\tan ^2}B - {\sin ^2}B = 25\left[ {\dfrac{1}{{144}} - \dfrac{1}{{169}}} \right]
On taking LCM we get,
tan2Bsin2B=25[169144144×169]=25×25169×144\Rightarrow {\tan ^2}B - {\sin ^2}B = 25\left[ {\dfrac{{169 - 144}}{{144 \times 169}}} \right] = \dfrac{{25 \times 25}}{{169 \times 144}}
On multiplying the numerator, we get
tan2Bsin2B=625144×169\Rightarrow {\tan ^2}B - {\sin ^2}B = \dfrac{{625}}{{144 \times 169}} --- (i)
On taking RHS and putting the required values we get,
sin4Bsec2B=(513)4×(1312)2\Rightarrow {\sin ^4}B{\sec ^2}B = {\left( {\dfrac{5}{{13}}} \right)^4} \times {\left( {\dfrac{{13}}{{12}}} \right)^2}
On solving we get,
sin4Bsec2B=54134×132122\Rightarrow {\sin ^4}B{\sec ^2}B = \dfrac{{{5^4}}}{{{{13}^4}}} \times \dfrac{{{{13}^2}}}{{{{12}^2}}}
On cancelling 132{13^2} from numerator and denominator, we get-
sin4Bsec2B=54132×122\Rightarrow {\sin ^4}B{\sec ^2}B = \dfrac{{{5^4}}}{{{{13}^2} \times {{12}^2}}}
On simplifying we get,
sin4Bsec2B=625169×144\Rightarrow {\sin ^4}B{\sec ^2}B = \dfrac{{625}}{{169 \times 144}} -- (ii)
From eq. (i) and eq. (ii), we get
\Rightarrow tan2Bsin2B=sin4Bsec2B{\tan ^2}B - {\sin ^2}B = {\sin ^4}B{\sec ^2}B
Hence, Proved.

Note: You can also directly use cotθ=BP\cot \theta = \dfrac{B}{P}where B=base and P=perpendicular. Then use the Pythagoras theorem to find hypotenuse (H). Also, you can usesecθ=HB\sec \theta = \dfrac{H}{B} to find the value ofsecB\sec B .