Solveeit Logo

Question

Mathematics Question on Trigonometry

If
cotα=1cot α=1 and secβ=53sec β=−\frac{5}{3} where π<α<3π2andπ2<β<ππ<α<\frac{3π}{2} and \frac{π}{2}<β<π
, then the value of tan(α + β) and the quadrant in which α + β lies, respectively are :

A

-1/7 and IVth quadrant

B

7 and Ist quadrant

C

– 7 and IVth quadrant

D

1/7 and Ist quadrant

Answer

-1/7 and IVth quadrant

Explanation

Solution

The correct answer is (A) : 17-\frac{1}{7} and IVth quadrant
∵ cot α = 1,
α(π,3π2)α∈(π, \frac{3π}{2})
then tan α = 1 and secβ=53,β(π2,π)sec⁡ β=−\frac{5}{3}, β∈(\frac{π}{2},π)
then tanβ=43tan⁡ β=−\frac{4}{3}
tan(α+β)=tanα+tanβ1tanαtanβ∴tan⁡(α+β)=\frac{tan⁡α+tan⁡β}{1−tan⁡α⋅tan⁡β}
=1431+43=\frac{1−\frac{4}{3}}{1+\frac{4}{3}}
=17=−\frac{1}{7}
α+β(3π2,2π)α+β∈(\frac{3π}{2},2π)
i.e. fourth quadrant