Question
Question: If $\cot^{-1}\left(4+\frac{2}{4}\right)+\cot^{-1}\left(4+\frac{6}{4}\right)+\cot^{-1}\left(4+\frac{1...
If cot−1(4+42)+cot−1(4+46)+cot−1(4+412)+...∞=tan−1(ba) where a and b are co-prime then find the value of (a+b).

Answer
5
Explanation
Solution
The general term is given by:
Tn=cot−1(4+4n(n+1))=tan−1(n2+n+164)
This is a telescoping series, and the sum converges to tan−1(32).
Therefore, a=2 and b=3, and a+b=5.