Solveeit Logo

Question

Question: If $\cot^{-1}\left(4+\frac{2}{4}\right)+\cot^{-1}\left(4+\frac{6}{4}\right)+\cot^{-1}\left(4+\frac{1...

If cot1(4+24)+cot1(4+64)+cot1(4+124)+...=tan1(ab)\cot^{-1}\left(4+\frac{2}{4}\right)+\cot^{-1}\left(4+\frac{6}{4}\right)+\cot^{-1}\left(4+\frac{12}{4}\right)+... \infty=\tan^{-1}\left(\frac{a}{b}\right) where a and b are co-prime then find the value of (a+b).

Answer

5

Explanation

Solution

The general term is given by:

Tn=cot1(4+n(n+1)4)=tan1(4n2+n+16)T_n = \cot^{-1}\left(4+\frac{n(n+1)}{4}\right) = \tan^{-1}\left(\frac{4}{n^2+n+16}\right)

This is a telescoping series, and the sum converges to tan1(23)\tan^{-1}\left(\frac{2}{3}\right).

Therefore, a=2a = 2 and b=3b = 3, and a+b=5a+b = 5.