Solveeit Logo

Question

Question: If \({{\cot }^{-1}}x+{{\cot }^{-1}}y=0\) and \({{\cos }^{-1}}x+{{\cos }^{-1}}y=\dfrac{\pi }{2}\) . S...

If cot1x+cot1y=0{{\cot }^{-1}}x+{{\cot }^{-1}}y=0 and cos1x+cos1y=π2{{\cos }^{-1}}x+{{\cos }^{-1}}y=\dfrac{\pi }{2} . So x+y=x+y=

Explanation

Solution

Here in this question we have been asked to find the value of x+yx+y given that cot1x+cot1y=0{{\cot }^{-1}}x+{{\cot }^{-1}}y=0 and cos1x+cos1y=π2{{\cos }^{-1}}x+{{\cos }^{-1}}y=\dfrac{\pi }{2} . For answering this question we will solve both the expressions using the identities given as cos1x=sin11x2{{\cos }^{-1}}x={{\sin }^{-1}}\sqrt{1-{{x}^{2}}} and cot1x=cos1(x1+x2)=sin1(11+x2){{\cot }^{-1}}x={{\cos }^{-1}}\left( \dfrac{x}{\sqrt{1+{{x}^{2}}}} \right)={{\sin }^{-1}}\left( \dfrac{1}{\sqrt{1+{{x}^{2}}}} \right) .

Complete step-by-step solution:
Now considering from the question we have been asked to find the value of x+yx+y given that cot1x+cot1y=0{{\cot }^{-1}}x+{{\cot }^{-1}}y=0 and cos1x+cos1y=π2{{\cos }^{-1}}x+{{\cos }^{-1}}y=\dfrac{\pi }{2} .
From the basic concepts of inverse trigonometry, we know the following identities given ascos1x=sin11x2{{\cos }^{-1}}x={{\sin }^{-1}}\sqrt{1-{{x}^{2}}} and cot1x=cos1(x1+x2)=sin1(11+x2){{\cot }^{-1}}x={{\cos }^{-1}}\left( \dfrac{x}{\sqrt{1+{{x}^{2}}}} \right)={{\sin }^{-1}}\left( \dfrac{1}{\sqrt{1+{{x}^{2}}}} \right) .
We know that cos(A+B)=cosAcosBsinAsinB\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B .
Now we will apply cos\cos on both sides of cos1x+cos1y=π2{{\cos }^{-1}}x+{{\cos }^{-1}}y=\dfrac{\pi }{2} then we will have
cos(cos1x+cos1y)=cosπ2 cos(cos1x)cos(cos1y)sin(cos1x)sin(cos1y)=0 \begin{aligned} & \Rightarrow \cos \left( {{\cos }^{-1}}x+{{\cos }^{-1}}y \right)=\cos \dfrac{\pi }{2} \\\ & \Rightarrow \cos \left( {{\cos }^{-1}}x \right)\cos \left( {{\cos }^{-1}}y \right)-\sin \left( {{\cos }^{-1}}x \right)\sin \left( {{\cos }^{-1}}y \right)=0 \\\ \end{aligned}
by using the formulae we have discussed above.
Now if we further simplify the expression we will get xy1x21y2=0xy-\sqrt{1-{{x}^{2}}}\sqrt{1-{{y}^{2}}}=0 .
Now we will simplify this and then we will get
xy=1x21y2 x2y2=1x2y2+x2y2 x2+y2=1 \begin{aligned} & \Rightarrow xy=\sqrt{1-{{x}^{2}}}\sqrt{1-{{y}^{2}}} \\\ & \Rightarrow {{x}^{2}}{{y}^{2}}=1-{{x}^{2}}-{{y}^{2}}+{{x}^{2}}{{y}^{2}} \\\ & \Rightarrow {{x}^{2}}+{{y}^{2}}=1 \\\ \end{aligned} .
Let us assume that cot1x=θ1{{\cot }^{-1}}x={{\theta }_{1}} and cot1y=θ2{{\cot }^{-1}}y={{\theta }_{2}}. Now from the expression cot1x+cot1y=0{{\cot }^{-1}}x+{{\cot }^{-1}}y=0 we will get θ1=θ2{{\theta }_{1}}=-{{\theta }_{2}} .
As cot1x=θ1{{\cot }^{-1}}x={{\theta }_{1}} we will get cot1x=cos1(x1+x2)θ1{{\cot }^{-1}}x={{\cos }^{-1}}\left( \dfrac{x}{\sqrt{1+{{x}^{2}}}} \right)\Rightarrow {{\theta }_{1}} . Similarly cot1y=cos1(y1+y2)θ2{{\cot }^{-1}}y={{\cos }^{-1}}\left( \dfrac{y}{\sqrt{1+{{y}^{2}}}} \right)\Rightarrow {{\theta }_{2}}
Hence we can say that cosθ1=cosθ2\cos {{\theta }_{1}}=\cos {{\theta }_{2}} since θ1=θ2{{\theta }_{1}}=-{{\theta }_{2}} . So we can say that x1+x2=y1+y2\dfrac{x}{\sqrt{1+{{x}^{2}}}}=\dfrac{y}{\sqrt{1+{{y}^{2}}}} .
By simplifying this we will get
x21+x2=y21+y2 x2=y2 \begin{aligned} & \Rightarrow \dfrac{{{x}^{2}}}{1+{{x}^{2}}}=\dfrac{{{y}^{2}}}{1+{{y}^{2}}} \\\ & \Rightarrow {{x}^{2}}={{y}^{2}} \\\ \end{aligned}
Now we will have x2+y2=1{{x}^{2}}+{{y}^{2}}=1 and x2=y2{{x}^{2}}={{y}^{2}} . Now we need to solve these two expressions in order to get the value of x+yx+y . Now we will get 2x2=1x2=122{{x}^{2}}=1\Rightarrow {{x}^{2}}=\dfrac{1}{2} .
From x2=y2{{x}^{2}}={{y}^{2}} we will have x=±yx=\pm y which gives us two different conditions x=yx=y and x=yx=-y .
When x=yx=y then we will have x=y=12x=y=\dfrac{1}{\sqrt{2}} and x+y=2x+y=\sqrt{2} .
When x=yx=-y we will have x+y=0x+y=0 .
Therefore we can conclude that there are two possible values for x+yx+y they are 0 and 2\sqrt{2} .

Note: In the process of answering questions of this type we should be very careful to process every possible condition. Someone may miss any one of the two conditions x=±yx=\pm y and end up having a conclusion with any one answer only which would be a wrong answer.