Solveeit Logo

Question

Question: If \({\cot ^{ - 1}}\left( x \right) + {\tan ^{ - 1}}\left( 3 \right) = \dfrac{\pi }{2}\), then \(x =...

If cot1(x)+tan1(3)=π2{\cot ^{ - 1}}\left( x \right) + {\tan ^{ - 1}}\left( 3 \right) = \dfrac{\pi }{2}, then x=x =
A. 13\dfrac{1}{3}
B. 14\dfrac{1}{4}
C. 33
D. 44

Explanation

Solution

In order to solve the equation, initiate with proving the resultant value tan1x+cot1x=π2{\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \dfrac{\pi }{2} by following the appropriate steps then move ahead to compare the given values in the question with the obtained result. Solve the equations with the appropriate subtraction or addition method and get the value of xx.

Complete step by step answer:
Considering tan1x=p{\tan ^{ - 1}}x = p ……(1)
Multiplying both the sides by tan\tan , we get:
tan(tan1x)=tanp\tan \left( {{{\tan }^{ - 1}}x} \right) = \tan p
x=tanp\Rightarrow x = \tan p
Since, we know that tanp\tan p can be written in terms of cot\cot as tanp=cot(π2p)\tan p = \cot \left( {\dfrac{\pi }{2} - p} \right).So, substituting this value in the above function, we get:
x=cot(π2p)\Rightarrow x = \cot \left( {\dfrac{\pi }{2} - p} \right)
Multiplying both the sides by cot1{\cot ^{ - 1}}, we get:
cot1x=cot1(cot(π2p))\Rightarrow {\cot ^{ - 1}}x = {\cot ^{ - 1}}\left( {\cot \left( {\dfrac{\pi }{2} - p} \right)} \right)
cot1x=π2p\Rightarrow {\cot ^{ - 1}}x = \dfrac{\pi }{2} - p ……(2)

Adding equation 1 and 2 we get:
tan1x+cot1x=p+π2p{\tan ^{ - 1}}x + {\cot ^{ - 1}}x = p + \dfrac{\pi }{2} - p
Solving it further, we get:
tan1x+cot1x=π2\Rightarrow {\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \dfrac{\pi }{2} …..(3)
Subtracting both sides by cot1(x){\cot ^{ - 1}}\left( x \right):
tan1x+cot1xcot1x=π2cot1x\Rightarrow {\tan ^{ - 1}}x + {\cot ^{ - 1}}x - {\cot ^{ - 1}}x = \dfrac{\pi }{2} - {\cot ^{ - 1}}x
tan1x=π2cot1x\Rightarrow {\tan ^{ - 1}}x = \dfrac{\pi }{2} - {\cot ^{ - 1}}x ……(4)
Now, since we are given with the equation cot1(x)+tan1(3)=π2{\cot ^{ - 1}}\left( x \right) + {\tan ^{ - 1}}\left( 3 \right) = \dfrac{\pi }{2}.
Subtracting both the sides by cot1(x){\cot ^{ - 1}}\left( x \right),we get:
cot1(x)+tan1(3)cot1(x)=π2cot1(x){\cot ^{ - 1}}\left( x \right) + {\tan ^{ - 1}}\left( 3 \right) - {\cot ^{ - 1}}\left( x \right) = \dfrac{\pi }{2} - {\cot ^{ - 1}}\left( x \right)
tan1(3)=π2cot1(x)\Rightarrow {\tan ^{ - 1}}\left( 3 \right) = \dfrac{\pi }{2} - {\cot ^{ - 1}}\left( x \right)
From equation 4, we can write it as:
tan1(3)=tan1(x)\Rightarrow {\tan ^{ - 1}}\left( 3 \right) = {\tan ^{ - 1}}\left( x \right)
Multiplying both the sides by tan\tan , we get:
tan(tan1(3))=tan(tan1(x))\Rightarrow \tan \left( {{{\tan }^{ - 1}}\left( 3 \right)} \right) = \tan \left( {{{\tan }^{ - 1}}\left( x \right)} \right)
3=x\Rightarrow 3 = x
x=3\therefore x = 3
Therefore, the value of x=3x = 3.

Hence, option C is correct.

Note: We could have alternatively directly solved the equation by comparing the given equation with the obtained equation 3, which would have resulted in the value of xx to be 33. It’s important to prove the results before applying direct values otherwise it may lead to errors. tanp\tan p is written in terms of cot\cot as tanp=cot(π2p)\tan p = \cot \left( {\dfrac{\pi }{2} - p} \right) because π2\dfrac{\pi }{2} is an odd function, so it changes the value outside the bracket into its reverse one and obtains a positive value because π2p\dfrac{\pi }{2} - p lies in the first quadrant and in first quadrant all the values are positive. Similarly, we can write cot in terms of tan.