Question
Mathematics Question on Continuity and differentiability
If cosy=xcos(a+y) with cosa≠±1,prove that dxdy=sinacos2(a+y)
Answer
It is given that,cosy=xcos(a+y)
∴dxd[cosy]=dxd[xcos(a+y)]
⇒-sinydxdy=cos(a+y).dxd(x)+x.dxd[cos(a+y)]
⇒-sinydxdy=cos(a+y)+x.[-sin(a+y)]dxdy
⇒[xsin(a+y)-siny]dxdy=cos(a+y) ....(1)
Since cosy=xcos(a+y).x=cos(a+y)cosy
Then, equation (1) reduces to
[cos(a+y)cosy.sin(a+y)-siny]dxdycos(a+y)
⇒[cosy.sin(a+y)-siny.cos(a+y)].dxdy=cos2(a+y)
⇒sin(a+y-y)dxdy=cos2(a+b)
⇒ dxdy=sinacos2(a+b)
Hence, it proved.