Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If cosy=xcos(a+y) with cosa≠±1,prove that dydx\frac{dy}{dx}=cos2(a+y)sina\frac{cos^2(a+y)}{sin\,a}

Answer

It is given that,cosy=xcos(a+y)
ddx\frac{d}{dx}[cosy]=ddx\frac{d}{dx}[xcos(a+y)]
⇒-sinydydx\frac{dy}{dx}=cos(a+y).ddx\frac{d}{dx}(x)+x.ddx\frac{d}{dx}[cos(a+y)]
⇒-sinydydx\frac{dy}{dx}=cos(a+y)+x.[-sin(a+y)]dydx\frac{dy}{dx}
⇒[xsin(a+y)-siny]dydx\frac{dy}{dx}=cos(a+y) ....(1)
Since cosy=xcos(a+y).x=cosycos(a+y)\frac{cos\,y}{cos(a+y)}

Then, equation (1) reduces to
[cosycos(a+y)\frac{cos\,y}{cos(a+y)}.sin(a+y)-siny]dydx\frac{dy}{dx}cos(a+y)
⇒[cosy.sin(a+y)-siny.cos(a+y)].dydx\frac{dy}{dx}=cos2(a+y)
⇒sin(a+y-y)dydx\frac{dy}{dx}=cos2(a+b)
dydx\frac{dy}{dx}=cos2(a+b)sina\frac{cos^2(a+b)}{sin\,a}
Hence, it proved.