Solveeit Logo

Question

Question: If \(\cos(x + iy) = A + iB\), then A equals...

If cos(x+iy)=A+iB\cos(x + iy) = A + iB, then A equals

A

cosxcoshy\cos x\cosh y

B

sinxsinhy\sin x{\sin h}y

C

sinxsinhy- \sin x\sinh y

D

cosxsinhy\cos x{\sin h}y

Answer

cosxcoshy\cos x\cosh y

Explanation

Solution

cos(x+iy)=A+iB\mathbf{\cos}\mathbf{(}\mathbf{x + iy) = A + iB}

cosxcos(iy)sinxsin(iy)=A+iB\mathbf{\cos}\mathbf{x}\mathbf{\cos}\mathbf{(}\mathbf{iy)}\mathbf{-}\mathbf{\sin}\mathbf{x}\mathbf{\sin}\mathbf{(}\mathbf{iy) = A + iB}

cosxcoshyisinxsinhy=A+iB\cos x\cosh y - i\sin x\sinh y = A + iB\therefore A=cosxcoshyA = \cos x{\cos h}y