Question
Question: If \(\cos(u + iv) = x + iy,\) then \(x^{2} + y^{2} + 1\) is equal to...
If cos(u+iv)=x+iy, then x2+y2+1 is equal to
A
cos2u+sinh2v
B
sin2u+cosh2v
C
cos2u+cosh2v
D
sin2u+sinh2v
Answer
cos2u+cosh2v
Explanation
Solution
cos(u+iv)=x+iy
⇒cosucos(iv)−sinusin(iv)=x+iy
⇒ cosucoshv−isinusinhv=x+iy∴ x=cosucoshv
y=−sinusinhv
x2+y2=cos2u.cosh2v+sin2u.sinh2v= (1−sin2u)cosh2v+sin2v[cosh2v−1] = cosh2v−sin2v
∴ x2+y2+1=cosh2v+1−sin2u = cosh2v+cos2u