Solveeit Logo

Question

Question: If \(\cos(u + iv) = x + iy,\) then \(x^{2} + y^{2} + 1\) is equal to...

If cos(u+iv)=x+iy,\cos(u + iv) = x + iy, then x2+y2+1x^{2} + y^{2} + 1 is equal to

A

cos2u+sinh2v\cos^{2}u + \sinh^{2}v

B

sin2u+cosh2v\sin^{2}u + {\cos h}^{2}v

C

cos2u+cosh2v\cos^{2}u + \cosh^{2}v

D

sin2u+sinh2v\sin^{2}u + {\sin h}^{2}v

Answer

cos2u+cosh2v\cos^{2}u + \cosh^{2}v

Explanation

Solution

cos(u+iv)=x+iy\cos(u + iv) = x + iy

cosucos(iv)sinusin(iv)=x+iy\cos u\cos(iv) - \sin u\sin(iv) = x + iy

cosucoshvisinusinhv=x+iy\cos u\cosh v - i\sin u\sinh v = x + iy\therefore x=cosucoshvx = \cos u{\cos h}v

y=sinusinhvy = - \sin u{\sin h}v

x2+y2=cos2u.cosh2v+sin2u.sinh2vx^{2} + y^{2} = \cos^{2}u.\cosh^{2}v + \sin^{2}u.\sinh^{2}v= (1sin2u)cosh2v+sin2v[cosh2v1](1 - \sin^{2}u)\cosh^{2}v + \sin^{2}v\lbrack\cosh^{2}v - 1\rbrack = cosh2vsin2v{\cos h}^{2}v - \sin^{2}v

\therefore x2+y2+1=cosh2v+1sin2ux^{2} + y^{2} + 1 = \cosh^{2}v + 1 - \sin^{2}u = cosh2v+cos2u{\cos h}^{2}v + \cos^{2}u