Solveeit Logo

Question

Question: If \(\cos\theta = \frac{8}{17}\) and \(\theta\) lies in the 1<sup>st</sup> quadrant, then the value ...

If cosθ=817\cos\theta = \frac{8}{17} and θ\theta lies in the 1st quadrant, then the value of cos(30+θ)+cos(45θ)+cos(120θ)\cos(30{^\circ} + \theta) + \cos(45{^\circ} - \theta) + \cos(120{^\circ} - \theta) is

A

2317(312+12)\frac{23}{17}\left( \frac{\sqrt{3} - 1}{2} + \frac{1}{\sqrt{2}} \right)

B

2317(3+12+12)\frac{23}{17}\left( \frac{\sqrt{3} + 1}{2} + \frac{1}{\sqrt{2}} \right)

C

2317(31212)\frac{23}{17}\left( \frac{\sqrt{3} - 1}{2} - \frac{1}{\sqrt{2}} \right)

D

2317(3+1212)\frac{23}{17}\left( \frac{\sqrt{3} + 1}{2} - \frac{1}{\sqrt{2}} \right)

Answer

2317(312+12)\frac{23}{17}\left( \frac{\sqrt{3} - 1}{2} + \frac{1}{\sqrt{2}} \right)

Explanation

Solution

Since cosθ=817\cos\theta = \frac{8}{17} and 0<θ<π2sinθ=182172=15170 < \theta < \frac{\pi}{2} \Rightarrow \sin\theta = \sqrt{1 - \frac{8^{2}}{17^{2}}} = \frac{15}{17}

The value of the given expression

=cos30o.cosθsin30osinθ+cos45ocosθ= \cos{}30^{o}.\cos\theta - \sin{}30^{o}\sin\theta + \cos{}45^{o}\cos\theta

+sin45osinθ+cos120ocosθ+sin120osinθ+ \sin{}45^{o}\sin\theta + \cos{}120^{o}\cos\theta + \sin{}120^{o}\sin\theta

=cosθ(32+1212)sinθ(121232)= \cos\theta\left( \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} - \frac{1}{2} \right) - \sin\theta\left( \frac{1}{2} - \frac{1}{\sqrt{2}} - \frac{\sqrt{3}}{2} \right)

=817(32+1212)+1517(32+1212)= \frac{8}{17}\left( \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} - \frac{1}{2} \right) + \frac{15}{17}\left( \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} - \frac{1}{2} \right)

=2317(312+12)= \frac{23}{17}\left( \frac{\sqrt{3} - 1}{2} + \frac{1}{\sqrt{2}} \right).