Solveeit Logo

Question

Question: If \(\cos\theta = \frac{1}{2}\left( x + \frac{1}{x} \right)\), then \(\frac{1}{2}\left( x^{2} + \fra...

If cosθ=12(x+1x)\cos\theta = \frac{1}{2}\left( x + \frac{1}{x} \right), then 12(x2+1x2)=\frac{1}{2}\left( x^{2} + \frac{1}{x^{2}} \right) =

A

sin2θ\sin 2\theta

B

cos2θ\cos 2\theta

C

tan2θ\tan 2\theta

D

sec2θ\sec 2\theta

Answer

cos2θ\cos 2\theta

Explanation

Solution

Given that cosθ=12(x+1x)x+1x=2cosθ\cos\theta = \frac{1}{2}\left( x + \frac{1}{x} \right) \Rightarrow x + \frac{1}{x} = 2\cos\theta

We know that x2+1x2=(x+1x)22x^{2} + \frac{1}{x^{2}} = \left( x + \frac{1}{x} \right)^{2} - 2

=(2cosθ)22=4cos2θ2=2cos2θ= (2\cos\theta)^{2} - 2 = 4\cos^{2}\theta - 2 = 2\cos{}2\theta

12(x2+1x2)=12×2cos2θ=cos2θ\therefore\frac{1}{2}\left( x^{2} + \frac{1}{x^{2}} \right) = \frac{1}{2} \times 2\cos 2\theta = \cos 2\theta