Solveeit Logo

Question

Question: If \(\cos\theta = \frac{1}{2},\cos\theta = - \frac{3}{5} \Rightarrow \theta = \frac{\pi}{3},\pi - \c...

If cosθ=12,cosθ=35θ=π3,πcos1(35)\cos\theta = \frac{1}{2},\cos\theta = - \frac{3}{5} \Rightarrow \theta = \frac{\pi}{3},\pi - \cos^{- 1}\left( \frac{3}{5} \right), then cosθ=12\cos\theta = \frac{- 1}{2}

A

0o<θ<360o0^{o} < \theta < 360^{o}

B

cos60o=12\cos 60^{o} = \frac{1}{2}

C

cos(180o60o)\cos(180^{o} - 60^{o})

D

=cos60o=12= - \cos 60^{o} = - \frac{1}{2}

Answer

cos60o=12\cos 60^{o} = \frac{1}{2}

Explanation

Solution

2sinx+2cosx>21(1/2)2^{\sin x} + 2^{\cos x} > 2^{1 - (1/\sqrt{2})}

Then x=5π4x = \frac{5\pi}{4}

(1+tanθ)(1+tanφ)=2tanθ+tanφ1tanθtanφ=1(1 + \tan\theta)(1 + \tan\varphi) = 2 \Rightarrow \frac{\tan\theta + \tan\varphi}{1 - \tan\theta\tan\varphi} = 1 \Rightarrow.