Solveeit Logo

Question

Question: If \(\cos\theta = \frac{- 1}{2}\text{and}0{^\circ} < \theta < \text{360}{^\circ},\)then the values o...

If cosθ=12and0<θ<360,\cos\theta = \frac{- 1}{2}\text{and}0{^\circ} < \theta < \text{360}{^\circ},then the values ofθ\thetaare

A

120and 300120{^\circ}\text{and }300{^\circ}

B

60and 12060{^\circ}\text{and }120{^\circ}

C

120and 240120{^\circ}\text{and }240{^\circ}

D

60and 24060{^\circ}\text{and }240{^\circ}

Answer

120and 240120{^\circ}\text{and }240{^\circ}

Explanation

Solution

Given, cosθ=12\cos\theta = - \frac{1}{2} and 0<θ<360.0{^\circ} < \theta < 360{^\circ}. We know that

cos60=12\cos 60{^\circ} = \frac{1}{2} and cos(18060)=cos60=12\cos(180{^\circ} - 60{^\circ}) = - \cos 60{^\circ} = \frac{- 1}{2} or

cos120=12.\cos 120{^\circ} = - \frac{1}{2}. Similarly cos(180o+60o)=cos60=12\cos(180^{o} + 60^{o}) = - \cos 60{^\circ} = - \frac{1}{2}

or cos240=12.\cos 240{^\circ} = \frac{- 1}{2}.

Therefore θ=120\theta = 120{^\circ} and 240°.