Solveeit Logo

Question

Question: If \(\cos\theta + \cos 7\theta + \cos 3\theta + \cos 5\theta = 0,\) then \(\theta =\)...

If cosθ+cos7θ+cos3θ+cos5θ=0,\cos\theta + \cos 7\theta + \cos 3\theta + \cos 5\theta = 0, then θ=\theta =

A

nπ4\frac{n\pi}{4}

B

nπ2\frac{n\pi}{2}

C

nπ8\frac{n\pi}{8}

D

None of these

Answer

nπ8\frac{n\pi}{8}

Explanation

Solution

Combining θ\theta and 7θ,3θand 5θ,7\theta,3\theta\text{and }5\theta, we get

2cos4θ(cos3θ+cosθ)=0\mathbf{2}\mathbf{\cos}\mathbf{4}\mathbf{\theta(}\mathbf{\cos}\mathbf{3}\mathbf{\theta +}\mathbf{\cos}\mathbf{\theta}\mathbf{) = 0}

\therefore 4cos4θ.cos2θ.cosθ=04\cos 4\theta.\cos 2\theta.\cos\theta = 0 \Rightarrow 4123sinθ(sin23θ)=04\frac{1}{2^{3}\sin\theta}(\sin 2^{3}\theta) = 0

\Rightarrow sin8θ=0.\sin 8\theta = 0. Hence θ=nπ8\mathbf{\theta =}\frac{\mathbf{n\pi}}{\mathbf{8}}