Question
Question: If \(\cos\theta = 0\) and \(\sin^{2}\theta = \frac{1}{2} = \sin^{2}\left( \frac{\pi}{4} \right)\), t...
If cosθ=0 and sin2θ=21=sin2(4π), then the possible values of ⇒lying between θ=(2n+1)2πand θ=nπ±4πis .
A
⇒and θ=90o
B
45oandsin(θ+6π)=1=sin(2π)⇒θ=2π−6π=3π
C
cosAsin(A−6π)=21[sin(2A−6π)−sin6π]and sin(2A−6π)−21
D
2A−6π=2πand ⇒A=3π
Answer
⇒and θ=90o
Explanation
Solution
Here a=bcosC+ccosB = sin(A+B)sinB=sinCsinB=cb
sin(A+B)sin(A−B)=sinCsinAcosB−sinBcosA= =cacosB−cbcosA
= cosB=2aca2+c2−b2,cosA=2bcb2+c2−a2
Hence, ⇒cacosB−cbcosA=2c21 i.e., (a2+c2−b2−b2−c2+a2) and 260°.