Solveeit Logo

Question

Question: If \(\cos\theta = 0\) and \(\sin^{2}\theta = \frac{1}{2} = \sin^{2}\left( \frac{\pi}{4} \right)\), t...

If cosθ=0\cos\theta = 0 and sin2θ=12=sin2(π4)\sin^{2}\theta = \frac{1}{2} = \sin^{2}\left( \frac{\pi}{4} \right), then the possible values of \Rightarrowlying between θ=(2n+1)π2\theta = (2n + 1)\frac{\pi}{2}and θ=nπ±π4\theta = n\pi \pm \frac{\pi}{4}is .

A

\Rightarrowand θ=90o\theta = 90^{o}

B

45o45^{o}andsin(θ+π6)=1=sin(π2)θ=π2π6=π3\sin\left( \theta + \frac{\pi}{6} \right) = 1 = \sin\left( \frac{\pi}{2} \right) \Rightarrow \theta = \frac{\pi}{2} - \frac{\pi}{6} = \frac{\pi}{3}

C

cosAsin(Aπ6)=12[sin(2Aπ6)sinπ6]\cos A\sin\left( A - \frac{\pi}{6} \right) = \frac{1}{2}\left\lbrack \sin\left( 2A - \frac{\pi}{6} \right) - \sin\frac{\pi}{6} \right\rbrackand sin(2Aπ6)12\sin\left( 2A - \frac{\pi}{6} \right) - \frac{1}{2}

D

2Aπ6=π22A - \frac{\pi}{6} = \frac{\pi}{2}and A=π3\Rightarrow A = \frac{\pi}{3}

Answer

\Rightarrowand θ=90o\theta = 90^{o}

Explanation

Solution

Here a=bcosC+ccosBa = b\cos C + c\cos B = sinBsin(A+B)=sinBsinC=bc\frac{\sin B}{\sin(A + B)} = \frac{\sin B}{\sin C} = \frac{b}{c}

sin(AB)sin(A+B)=sinAcosBsinBcosAsinC\frac{\sin(A - B)}{\sin(A + B)} = \frac{\sin A\cos B - \sin B\cos A}{\sin C}= =accosBbccosA= \frac{a}{c}\cos B - \frac{b}{c}\cos A

= cosB=a2+c2b22ac,cosA=b2+c2a22bc\cos B = \frac{a^{2} + c^{2} - b^{2}}{2ac},\cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}

Hence, accosBbccosA=12c2\Rightarrow \frac{a}{c}\cos B - \frac{b}{c}\cos A = \frac{1}{2c^{2}} i.e., (a2+c2b2b2c2+a2)(a^{2} + c^{2} - b^{2} - b^{2} - c^{2} + a^{2}) and 260°.