Solveeit Logo

Question

Question: If \(\cos\theta - \sin\theta = \sqrt{2}\sin\theta,\) then \(\cos\theta + \sin\theta\)is equal to...

If cosθsinθ=2sinθ,\cos\theta - \sin\theta = \sqrt{2}\sin\theta, then cosθ+sinθ\cos\theta + \sin\thetais equal to

A

2cosθ\sqrt{2}\cos\theta

B

2sinθ\sqrt{2}\sin\theta

C

2cosθ2\cos\theta

D

2cosθ- \sqrt{2}\cos\theta

Answer

2cosθ\sqrt{2}\cos\theta

Explanation

Solution

We have cosθsinθ=2sinθ\cos\theta - \sin\theta = \sqrt{2}\sin\theta

cosθ=(2+1)sinθ(21)cosθ=sinθ\Rightarrow \cos\theta = (\sqrt{2} + 1)\sin\theta \Rightarrow (\sqrt{2} - 1)\cos\theta = \sin\theta

2cosθcosθ=sinθsinθ+cosθ=2cosθ.\Rightarrow \sqrt{2}\cos\theta - \cos\theta = \sin\theta \Rightarrow \sin\theta + \cos\theta = \sqrt{2}\cos\theta.