Solveeit Logo

Question

Question: If \(\cos(\theta - \alpha),\mspace{6mu}\cos\theta\)and \(\cos(\theta + \alpha)\) are in H.P., then \...

If cos(θα),6mucosθ\cos(\theta - \alpha),\mspace{6mu}\cos\thetaand cos(θ+α)\cos(\theta + \alpha) are in H.P., then cosθsecα2\cos\theta\sec\frac{\alpha}{2}is equal to

A

±2\pm \sqrt{2}

B

±3\pm \sqrt{3}

C

±1/2\pm 1/\sqrt{2}

D

None of these

Answer

±2\pm \sqrt{2}

Explanation

Solution

Given cos(θα),cosθ\cos(\theta - \alpha),\cos\thetaand cos(θ+α)\cos(\theta + \alpha) are in H.P.

1cos(θα),1cosθ,1cos(θ+α)\frac{1}{\cos(\theta - \alpha)},\frac{1}{\cos\theta},\frac{1}{\cos(\theta + \alpha)}will be in A.P.

Hence, 2cosθ=1cos(θα)+1cos(θ+α)\frac{2}{\cos\theta} = \frac{1}{\cos(\theta - \alpha)} + \frac{1}{\cos(\theta + \alpha)}

=cos(α+θ)+cos(θα)cos2θsin2α= \frac{\cos(\alpha + \theta) + \cos(\theta - \alpha)}{\cos^{2}\theta - \sin^{2}\alpha}2cosθ=2cosθcosαcos2θsin2α\frac{2}{\cos\theta} = \frac{2\cos\theta\cos\alpha}{\cos^{2}\theta - \sin^{2}\alpha}

cos2θsin2α=cos2θcosα\cos^{2}\theta - \sin^{2}\alpha = \cos^{2}\theta\cos\alpha

cos2θ(1cosα)=sin2α\cos^{2}\theta(1 - \cos\alpha) = \sin^{2}\alpha

cos2θ(2sin2α2)=4sin2α2cos2α2\cos^{2}\theta\left( 2\sin^{2}\frac{\alpha}{2} \right) = 4\sin^{2}\frac{\alpha}{2}\cos^{2}\frac{\alpha}{2}

cos2θsec2α2=2cosθsecα2=±2\cos^{2}\theta\sec^{2}\frac{\alpha}{2} = 2 \Rightarrow \cos\theta\sec\frac{\alpha}{2} = \pm \sqrt{2}.