Solveeit Logo

Question

Question: If \( \cosh (x) = \sec \theta \) , then \( {\tanh ^2}(\dfrac{x}{2}) = \) A. \( {\tan ^2}\dfrac{\t...

If cosh(x)=secθ\cosh (x) = \sec \theta , then tanh2(x2)={\tanh ^2}(\dfrac{x}{2}) =
A. tan2θ2{\tan ^2}\dfrac{\theta }{2}
B. cot2θ2{\cot ^2}\dfrac{\theta }{2}
C. tan2θ2- {\tan ^2}\dfrac{\theta }{2}
D. cot2θ2- {\cot ^2}\dfrac{\theta }{2}

Explanation

Solution

Hint : Hyperbolic functions are defined in terms of the exponential functions; they have similar names to the trigonometric functions. The three main hyperbolic functions are sinhx, coshx and tanhx. Use the definition and identities of these functions to simplify them and you will also require the knowledge of trigonometric identities to find out the correct answer.

Complete step-by-step answer :
We are given that coshx=secθ\cosh x = \sec \theta
We know that coshx=ex+ex2\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}
Use this value in the given equation,
ex+ex2=secθ ex+ex=2secθ   \dfrac{{{e^x} + {e^{ - x}}}}{2} = \sec \theta \\\ \Rightarrow {e^x} + {e^{ - x}} = 2\sec \theta \;
We have to find the value of tanh2x2{\tanh ^2}\dfrac{x}{2} .
We know that tanhx=exexex+ex\tanh x = \dfrac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}}
That means
tanhx2=ex2ex2ex2+ex2 tanh2(x2)=(ex2ex2ex2+ex2)2 tanh2x2=(ex2)2+(ex2)22×ex2×ex2(ex2)2+(ex2)2+2×ex2×ex2 tanh2x2=ex+ex2ex+ex+2  \tanh \dfrac{x}{2} = \dfrac{{{e^{\dfrac{x}{2}}} - {e^{\dfrac{{ - x}}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{\dfrac{{ - x}}{2}}}}} \\\ \Rightarrow {\tanh ^2}(\dfrac{x}{2}) = {(\dfrac{{{e^{\dfrac{x}{2}}} - {e^{\dfrac{{ - x}}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{\dfrac{{ - x}}{2}}}}})^2} \\\ {\tanh ^2}\dfrac{x}{2} = \dfrac{{{{({e^{\dfrac{x}{2}}})}^2} + {{({e^{\dfrac{{ - x}}{2}}})}^2} - 2 \times {e^{\dfrac{x}{2}}} \times {e^{\dfrac{{ - x}}{2}}}}}{{{{({e^{\dfrac{x}{2}}})}^2} + {{({e^{\dfrac{{ - x}}{2}}})}^2} + 2 \times {e^{\dfrac{x}{2}}} \times {e^{\dfrac{{ - x}}{2}}}}} \\\ {\tanh ^2}\dfrac{x}{2} = \dfrac{{{e^x} + {e^{ - x}} - 2}}{{{e^x} + {e^{ - x}} + 2}} \\\
Put the value ex+ex=secθ{e^x} + {e^{ - x}} = \sec \theta in the above equation,
tanh2x2=2secθ22secθ+2 tanh2x2=secθ1secθ+1 tanh2x2=1cosθ11cosθ+1 tanh2x2=1cosθ1+cosθ   {\tanh ^2}\dfrac{x}{2} = \dfrac{{2\sec \theta - 2}}{{2\sec \theta + 2}} \\\ {\tanh ^2}\dfrac{x}{2} = \dfrac{{\sec \theta - 1}}{{\sec \theta + 1}} \\\ {\tanh ^2}\dfrac{x}{2} = \dfrac{{\dfrac{1}{{\cos \theta }} - 1}}{{\dfrac{1}{{\cos \theta }} + 1}} \\\ {\tanh ^2}\dfrac{x}{2} = \dfrac{{1 - \cos \theta }}{{1 + \cos \theta }} \;
Now, we know that
cos2θ=12sin2θ 1cos2θ=2sin2θ 1cosθ=2sin2θ2  \cos 2\theta = 1 - 2{\sin ^2}\theta \\\ 1 - \cos 2\theta = 2{\sin ^2}\theta \\\ 1 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2} \\\
Also,
cos2θ=2cos2θ1 1+cos2θ=2cos2θ 1+cosθ=2cos2θ2   \cos 2\theta = 2{\cos ^2}\theta - 1 \\\ 1 + \cos 2\theta = 2{\cos ^2}\theta \\\ 1 + \cos \theta = 2{\cos ^2}\dfrac{\theta }{2} \;
Putting these values in the obtained equation, we get –
tanh2x2=2sin2θ22cos2θ2=tan2θ2{\tanh ^2}\dfrac{x}{2} = \dfrac{{2{{\sin }^2}\dfrac{\theta }{2}}}{{2{{\cos }^2}\dfrac{\theta }{2}}} = {\tan ^2}\dfrac{\theta }{2}
So, the correct answer is “Option A”.

Note : There are six trigonometric ratios, sine, cosine, tangent, cotangent, cosecant and secant. These six trigonometric ratios are abbreviated as sin, cos, tan, cot, cosec and sec respectively. In hyperbolic functions, the names are the same but their expressions are different. Carefully solve the question, as you may mix up the two functions and get a wrong answer