Solveeit Logo

Question

Question: If \(\cosh \left( u+iv \right)=x+iy\) then \(\dfrac{{{x}^{2}}}{{{\cos }^{2}}v}-\dfrac{{{y}^{2}}}{{{\...

If cosh(u+iv)=x+iy\cosh \left( u+iv \right)=x+iy then x2cos2vy2sin2v\dfrac{{{x}^{2}}}{{{\cos }^{2}}v}-\dfrac{{{y}^{2}}}{{{\sin }^{2}}v} is
A. 00
B. 1-1
C. 11
D. 22

Explanation

Solution

We will use the formula cosh(a+ib)=cos(iab)\cosh \left( a+ib \right)=\cos \left( ia-b \right) to expand the term cosh(u+iv)\cosh \left( u+iv \right) then we use some basic properties of complex sine and cosine functions and convert the expression in the form of a+iba+ib and then we will equate the R.H.S and L.H.S to get the values of x,yx,y. By using the values of x,yx,y we will find the value of x2cos2vy2sin2v\dfrac{{{x}^{2}}}{{{\cos }^{2}}v}-\dfrac{{{y}^{2}}}{{{\sin }^{2}}v}

Complete step by step answer:
Given that cosh(u+iv)=x+iy\cosh \left( u+iv \right)=x+iy
We know the formula cosh(a+ib)=cos(iab)\cosh \left( a+ib \right)=\cos \left( ia-b \right), so
x+iy=cos(ivu)x+iy=\cos \left( iv-u \right)
Use the formula cos(iab)=cosia.cosb+sinia.sinb\cos \left( ia-b \right)=\cos ia.\cos b+\sin ia.\sin b in the above equation, we have
x+iy=cosiu.cosv+siniu.sinvx+iy=\cos iu.\cos v+\sin iu.\sin v
We have basic properties of complex sin\sin and cos\cos function as cosia=cosha\cos ia=\cosh a and sinia=isinha\sin ia=i\sinh athen the above equation is modified as
x+iy=coshu.cosv+isinhu.sinv =(coshu.cosv)+i(sinhu.sinv)\begin{aligned} & x+iy=\cosh u.\cos v+i\sinh u.\sin v \\\ & =\left( \cosh u.\cos v \right)+i\left( \sinh u.\sin v \right) \end{aligned}
Equating on both sides we get the values of x,yx,yas
x=coshu.cosvx=\cosh u.\cos v and y=sinhu.sinvy=\sinh u.\sin v
Now the value of x2cos2vy2sin2v\dfrac{{{x}^{2}}}{{{\cos }^{2}}v}-\dfrac{{{y}^{2}}}{{{\sin }^{2}}v} is
x2cos2vy2sin2v=(coshu.cosv)2cos2v(sinhu.sinv)2sin2v =cosh2vsinh2v\begin{aligned} & \dfrac{{{x}^{2}}}{{{\cos }^{2}}v}-\dfrac{{{y}^{2}}}{{{\sin }^{2}}v}=\dfrac{{{\left( \cosh u.\cos v \right)}^{2}}}{{{\cos }^{2}}v}-\dfrac{{{\left( \sinh u.\sin v \right)}^{2}}}{{{\sin }^{2}}v} \\\ & ={{\cosh }^{2}}v-{{\sinh }^{2}}v \end{aligned}
We know coshx=(ex+ex2)\cosh x=\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right) and sinhx=(exex2)\sinh x=\left( \dfrac{{{e}^{x}}-{{e}^{-x}}}{2} \right)so the above equation modified as

& \dfrac{{{x}^{2}}}{{{\cos }^{2}}v}-\dfrac{{{y}^{2}}}{{{\sin }^{2}}v}={{\cosh }^{2}}v-{{\sinh }^{2}}v \\\ & ={{\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right)}^{2}}-{{\left( \dfrac{{{e}^{x}}-{{e}^{-x}}}{2} \right)}^{2}} \\\ & =\dfrac{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}-{{\left( {{e}^{x}}-{{e}^{-x}} \right)}^{2}}}{4} \\\ & =\dfrac{{{e}^{2x}}+{{e}^{-2x}}+2.{{e}^{x-x}}-\left( {{e}^{2x}}+{{e}^{-2x}}-2.{{e}^{x-x}} \right)}{4} \\\ & =\dfrac{{{e}^{2x}}+{{e}^{-2x}}+2-{{e}^{2x}}-{{e}^{-2x}}+2}{4} \\\ & =1 \end{aligned}$$ **So, the correct answer is “Option C”.** **Note:** The hyperbolic equations look similar so we have to be careful while we are using the equations. You can directly use the formula ${{\cosh }^{2}}x-{{\sinh }^{2}}x=1$ instead of using the formulas $\cosh x=\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right)$, $\sinh x=\left( \dfrac{{{e}^{x}}-{{e}^{-x}}}{2} \right)$