Question
Question: If \(\cosh \left( u+iv \right)=x+iy\) then \(\dfrac{{{x}^{2}}}{{{\cos }^{2}}v}-\dfrac{{{y}^{2}}}{{{\...
If cosh(u+iv)=x+iy then cos2vx2−sin2vy2 is
A. 0
B. −1
C. 1
D. 2
Solution
We will use the formula cosh(a+ib)=cos(ia−b) to expand the term cosh(u+iv) then we use some basic properties of complex sine and cosine functions and convert the expression in the form of a+ib and then we will equate the R.H.S and L.H.S to get the values of x,y. By using the values of x,y we will find the value of cos2vx2−sin2vy2
Complete step by step answer:
Given that cosh(u+iv)=x+iy
We know the formula cosh(a+ib)=cos(ia−b), so
x+iy=cos(iv−u)
Use the formula cos(ia−b)=cosia.cosb+sinia.sinb in the above equation, we have
x+iy=cosiu.cosv+siniu.sinv
We have basic properties of complex sin and cosfunction as cosia=cosha and sinia=isinhathen the above equation is modified as
x+iy=coshu.cosv+isinhu.sinv=(coshu.cosv)+i(sinhu.sinv)
Equating on both sides we get the values of x,yas
x=coshu.cosv and y=sinhu.sinv
Now the value of cos2vx2−sin2vy2 is
cos2vx2−sin2vy2=cos2v(coshu.cosv)2−sin2v(sinhu.sinv)2=cosh2v−sinh2v
We know coshx=(2ex+e−x) and sinhx=(2ex−e−x)so the above equation modified as