Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If cosecθcotθ=qcosec \theta - \cot \, \theta = q, then the value of cotθ\cot \, \theta is:

A

1q22q\frac{1 - q^2}{2q}

B

1+q2q\frac{1 + q^2}{q}

C

q1q2\frac{q}{1 - q^2}

D

q1+q2\frac{q}{1 + q^2}

Answer

1q22q\frac{1 - q^2}{2q}

Explanation

Solution

Given : cosecθcotθ=qcosec \, \theta - \cot \, \theta = q We know that 1+cot2θ=cosec2θ1 + \cot^2 \theta = cosec^2 \theta 1+cot2θcotθ=q\therefore \, \sqrt{1 + \cot^2 \theta} - \cot \theta = q 1+cot2θ=q+cotθ\Rightarrow \, \, \sqrt{1 + \cot^2 \theta} = q + \cot \theta Squaring both sides, we get (1+cot2θ)=(q+cotθ)2\therefore \, \left(1+ \cot^{2} \theta\right) = \left(q + \cot \theta\right)^{2} 1+cot2θ=q2+cot2θ+2qcotθ\Rightarrow 1 + \cot^{2} \theta = q^{2} + \cot^{2} \theta+ 2 q \cot\theta 1q2=2qcotθ\Rightarrow 1 - q^{2} = 2q \cot\theta cotθ=1q22q\Rightarrow \cot \theta = \frac{ 1- q^{2}}{2q}