Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If cosecθcotθ=2017cosec\, \theta - \cot \theta = 2017, then quadrant in which θ\theta lies is

A

I

B

IV

C

III

D

II

Answer

II

Explanation

Solution

We have,
cosecθcotθ=2017(i)\operatorname{cosec} \theta-\cot \theta=2017 \ldots(i)
cosecθ+cotθ=12017(ii)\therefore \operatorname{cosec} \theta+\cot \theta=\frac{1}{2017} \ldots(ii)
[cosec2θcot2θ=1 cosecθcotθ=1cosecθ+cotθ]\left[\begin{array}{l}\because \operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1 \\\ \Rightarrow \operatorname{cosec} \theta-\cot \theta=\frac{1}{\operatorname{cosec} \theta+\cot \theta}\end{array}\right]
Adding Eqs. (i) and (ii),
we get 2cosecθ=2017+120172 \operatorname{cosec} \theta=2017+\frac{1}{2017}
cosecθ=12[2017+12017]>0\Rightarrow \operatorname{cosec} \theta=\frac{1}{2}\left[2017+\frac{1}{2017}\right]>0
θ\theta lie in Ist or IInd quadrant.
Subtracting E (i) from E (ii), we get
2cotθ=1201720172 \cot \theta=\frac{1}{2017}-2017
cotθ=12(120172017)<0\cot \theta=\frac{1}{2}\left(\frac{1}{2017}-2017\right) < 0
θ\therefore \theta lie in IInd and IIIrd quadrant.
Hence, θ\theta lies in IInd quadrant.