Solveeit Logo

Question

Question: If \(\cos(\alpha - \beta) = 1\) and\(\cos(\alpha + \beta) = \frac{1}{e}\), \(- \pi < \alpha,\beta < ...

If cos(αβ)=1\cos(\alpha - \beta) = 1 andcos(α+β)=1e\cos(\alpha + \beta) = \frac{1}{e}, π<α,β<π- \pi < \alpha,\beta < \pi, then total number of ordered pair of (α,β)(\alpha,\beta) is.

A

0

B

1

C

2

D

4

Answer

4

Explanation

Solution

2π<αβ<2π- 2\pi < \alpha - \beta < 2\pi

cos(αβ)=1\cos(\alpha - \beta) = 1αβ=0\alpha - \beta = 0α=β\alpha = \beta

cos2α=1e\cos 2\alpha = \frac{1}{e}and 2π<2α<2π- 2\pi < 2\alpha < 2\pi

Hence, there will be four solutions.