Solveeit Logo

Question

Question: If \(\cos(A - B) = \frac{3}{5}\) and \(\tan A\tan B = 2,\) then...

If cos(AB)=35\cos(A - B) = \frac{3}{5} and tanAtanB=2,\tan A\tan B = 2, then

A

cosAcosB=15\cos A\cos B = \frac{1}{5}

B

sinAsinB=25\sin A\sin B = - \frac{2}{5}

C

cosAcosB=15\cos A\cos B = - \frac{1}{5}

D

sinAsinB=15\sin A\sin B = - \frac{1}{5}

Answer

cosAcosB=15\cos A\cos B = \frac{1}{5}

Explanation

Solution

cos(AB)=35\cos(A - B) = \frac{3}{5}

5cosAcosB+5sinAsinB=35\cos A\cos B + 5\sin A\sin B = 3 …..(i)

From 2nd relation,

sinAsinB=2cosAcosB\sin A\sin B = 2\cos A\cos B .....(ii)

\therefore cosAcosB=15\cos A\cos B = \frac{1}{5} and 5(12+1)sinAsinB=35\left( \frac{1}{2} + 1 \right)\sin A\sin B = 3.