Solveeit Logo

Question

Question: If $(cos^8\theta - sin^8\theta)sec2\theta = \lambda_1 - \frac{sin^2(\lambda_2\theta)}{2}$ then the m...

If (cos8θsin8θ)sec2θ=λ1sin2(λ2θ)2(cos^8\theta - sin^8\theta)sec2\theta = \lambda_1 - \frac{sin^2(\lambda_2\theta)}{2} then the maximum value of λ1λ2\lambda_1 - \lambda_2 is

A

1

B

2

C

3

D

4

Answer

3

Explanation

Solution

The given equation is (cos8θsin8θ)sec2θ=λ1sin2(λ2θ)2(cos^8\theta - sin^8\theta)sec2\theta = \lambda_1 - \frac{sin^2(\lambda_2\theta)}{2}. The left-hand side simplifies as: cos8θsin8θ=(cos4θsin4θ)(cos4θ+sin4θ)cos^8\theta - sin^8\theta = (cos^4\theta - sin^4\theta)(cos^4\theta + sin^4\theta) =(cos2θsin2θ)(cos2θ+sin2θ)((cos2θ+sin2θ)22sin2θcos2θ)= (cos^2\theta - sin^2\theta)(cos^2\theta + sin^2\theta)((cos^2\theta + sin^2\theta)^2 - 2sin^2\theta cos^2\theta) =cos2θ(12(12sin2θ)2)=cos2θ(112sin2(2θ))= cos2\theta (1 - 2(\frac{1}{2}sin2\theta)^2) = cos2\theta (1 - \frac{1}{2}sin^2(2\theta)). So, LHS = cos2θ(112sin2(2θ))sec2θ=112sin2(2θ)cos2\theta (1 - \frac{1}{2}sin^2(2\theta)) sec2\theta = 1 - \frac{1}{2}sin^2(2\theta). Equating this with the RHS: 112sin2(2θ)=λ1sin2(λ2θ)21 - \frac{1}{2}sin^2(2\theta) = \lambda_1 - \frac{sin^2(\lambda_2\theta)}{2}. For this to be an identity, λ1=1\lambda_1 = 1 and sin2(2θ)=sin2(λ2θ)sin^2(2\theta) = sin^2(\lambda_2\theta). For sin2(A)=sin2(B)sin^2(A) = sin^2(B) to hold for all θ\theta, we need A=nπ±BA = n\pi \pm B. So, 2θ=nπ±λ2θ2\theta = n\pi \pm \lambda_2\theta. For this to hold for all θ\theta, nn must be 0. Thus, 2θ=±λ2θ2\theta = \pm \lambda_2\theta, which gives λ2=2\lambda_2 = 2 or λ2=2\lambda_2 = -2. The possible values for λ1λ2\lambda_1 - \lambda_2 are 12=11 - 2 = -1 and 1(2)=31 - (-2) = 3. The maximum value is 3.