Question
Question: If $(cos^8\theta - sin^8\theta)sec2\theta = \lambda_1 - \frac{sin^2(\lambda_2\theta)}{2}$ then the m...
If (cos8θ−sin8θ)sec2θ=λ1−2sin2(λ2θ) then the maximum value of λ1−λ2 is

A
1
B
2
C
3
D
4
Answer
3
Explanation
Solution
The given equation is (cos8θ−sin8θ)sec2θ=λ1−2sin2(λ2θ). The left-hand side simplifies as: cos8θ−sin8θ=(cos4θ−sin4θ)(cos4θ+sin4θ) =(cos2θ−sin2θ)(cos2θ+sin2θ)((cos2θ+sin2θ)2−2sin2θcos2θ) =cos2θ(1−2(21sin2θ)2)=cos2θ(1−21sin2(2θ)). So, LHS = cos2θ(1−21sin2(2θ))sec2θ=1−21sin2(2θ). Equating this with the RHS: 1−21sin2(2θ)=λ1−2sin2(λ2θ). For this to be an identity, λ1=1 and sin2(2θ)=sin2(λ2θ). For sin2(A)=sin2(B) to hold for all θ, we need A=nπ±B. So, 2θ=nπ±λ2θ. For this to hold for all θ, n must be 0. Thus, 2θ=±λ2θ, which gives λ2=2 or λ2=−2. The possible values for λ1−λ2 are 1−2=−1 and 1−(−2)=3. The maximum value is 3.
