Solveeit Logo

Question

Question: If $\cos^2x \frac{dy}{dx} - y\tan2x = \cos^4x$, where $|x| < \frac{\pi}{4}$ and $y(\frac{\pi}{6}) = ...

If cos2xdydxytan2x=cos4x\cos^2x \frac{dy}{dx} - y\tan2x = \cos^4x, where x<π4|x| < \frac{\pi}{4} and y(π6)=338y(\frac{\pi}{6}) = \frac{3\sqrt{3}}{8}, then the constant term in the solution of the differential equation is

Answer

0

Explanation

Solution

The given differential equation is cos2xdydxytan2x=cos4x\cos^2x \frac{dy}{dx} - y\tan2x = \cos^4x.

We can rewrite this as a first-order linear differential equation in the standard form dydx+P(x)y=Q(x)\frac{dy}{dx} + P(x)y = Q(x).

Divide the equation by cos2x\cos^2x: dydxtan2xcos2xy=cos4xcos2x\frac{dy}{dx} - \frac{\tan2x}{\cos^2x} y = \frac{\cos^4x}{\cos^2x}

dydx(tan2xsec2x)y=cos2x\frac{dy}{dx} - (\tan2x \sec^2x) y = \cos^2x

Here, P(x)=tan2xsec2xP(x) = -\tan2x \sec^2x and Q(x)=cos2xQ(x) = \cos^2x.

The integrating factor (IF) is eP(x)dxe^{\int P(x) dx}.

P(x)dx=tan2xsec2xdx\int P(x) dx = \int -\tan2x \sec^2x dx.

Let u=tanxu = \tan x. Then du=sec2xdxdu = \sec^2x dx.

tan2x=2tanx1tan2x=2u1u2\tan2x = \frac{2\tan x}{1-\tan^2x} = \frac{2u}{1-u^2}.

The integral becomes 2u1u2du\int -\frac{2u}{1-u^2} du.

Let v=1u2v = 1-u^2. Then dv=2ududv = -2u du.

The integral is dvv=lnv+C=ln1u2+C=ln1tan2x+C\int \frac{dv}{v} = \ln|v| + C' = \ln|1-u^2| + C' = \ln|1-\tan^2x| + C'.

Since x<π4|x| < \frac{\pi}{4}, we have 1<tanx<1-1 < \tan x < 1, so 0tan2x<10 \le \tan^2x < 1. Thus, 1tan2x>01-\tan^2x > 0.

So, P(x)dx=ln(1tan2x)\int P(x) dx = \ln(1-\tan^2x).

The integrating factor is IF =eln(1tan2x)=1tan2x= e^{\ln(1-\tan^2x)} = 1-\tan^2x.

The general solution is given by yIF=Q(x)IFdx+Cy \cdot IF = \int Q(x) \cdot IF dx + C.

y(1tan2x)=cos2x(1tan2x)dx+Cy (1-\tan^2x) = \int \cos^2x (1-\tan^2x) dx + C.

We know that 1tan2x=cos2xsin2xcos2x=cos2xcos2x1-\tan^2x = \frac{\cos^2x - \sin^2x}{\cos^2x} = \frac{\cos2x}{\cos^2x}.

So, ycos2xcos2x=cos2x(cos2xcos2x)dx+Cy \frac{\cos2x}{\cos^2x} = \int \cos^2x \left(\frac{\cos2x}{\cos^2x}\right) dx + C.

ycos2xcos2x=cos2xdx+Cy \frac{\cos2x}{\cos^2x} = \int \cos2x dx + C.

ycos2xcos2x=12sin2x+Cy \frac{\cos2x}{\cos^2x} = \frac{1}{2}\sin2x + C.

The solution for y(x)y(x) is y(x)=cos2xcos2x(12sin2x+C)y(x) = \frac{\cos^2x}{\cos2x} \left(\frac{1}{2}\sin2x + C\right).

This can be written as y(x)=cos2xsin2x2cos2x+Ccos2xcos2xy(x) = \frac{\cos^2x \sin2x}{2\cos2x} + C \frac{\cos^2x}{\cos2x}.

The term Ccos2xcos2xC \frac{\cos^2x}{\cos2x} contains the constant CC. The question asks for "the constant term in the solution". This usually refers to the value of the constant CC itself, which is determined by the initial condition.

We are given the initial condition y(π6)=338y(\frac{\pi}{6}) = \frac{3\sqrt{3}}{8}.

Substitute x=π6x = \frac{\pi}{6} into the general solution:

y(π6)=cos2(π6)cos(2π6)(12sin(2π6)+C)y(\frac{\pi}{6}) = \frac{\cos^2(\frac{\pi}{6})}{\cos(2 \cdot \frac{\pi}{6})} \left(\frac{1}{2}\sin(2 \cdot \frac{\pi}{6}) + C\right).

cos(π6)=32\cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}, so cos2(π6)=(32)2=34\cos^2(\frac{\pi}{6}) = (\frac{\sqrt{3}}{2})^2 = \frac{3}{4}.

cos(π3)=12\cos(\frac{\pi}{3}) = \frac{1}{2}.

sin(π3)=32\sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}.

Substitute these values and the given y(π6)y(\frac{\pi}{6}) value:

338=3412(1232+C)\frac{3\sqrt{3}}{8} = \frac{\frac{3}{4}}{\frac{1}{2}} \left(\frac{1}{2} \cdot \frac{\sqrt{3}}{2} + C\right).

338=32(34+C)\frac{3\sqrt{3}}{8} = \frac{3}{2} \left(\frac{\sqrt{3}}{4} + C\right).

To solve for CC, divide both sides by 32\frac{3}{2}:

33823=34+C\frac{3\sqrt{3}}{8} \cdot \frac{2}{3} = \frac{\sqrt{3}}{4} + C.

34=34+C\frac{\sqrt{3}}{4} = \frac{\sqrt{3}}{4} + C.

This implies C=0C = 0.

The constant term in the solution, which is the value of CC, is 0.