Solveeit Logo

Question

Question: If \(\cos(180^{o} + 80^{o}) = \cos(180^{o} - 80^{o})\), then \(\cos 260{^\circ}\)=...

If cos(180o+80o)=cos(180o80o)\cos(180^{o} + 80^{o}) = \cos(180^{o} - 80^{o}), then cos260\cos 260{^\circ}=

A

cos260andcos100\cos 260{^\circ}\text{and}\cos 100{^\circ}

B

θ=100\theta = 100{^\circ}

C

\geq

D

12(2sinx+2cosx)2sinx.2cosx\frac{1}{2}(2^{\sin x} + 2^{\cos x}) \geq \sqrt{2^{\sin x}.2^{\cos x}}

Answer

θ=100\theta = 100{^\circ}

Explanation

Solution

=s(sc)ab{(sasb) ab+(sbsa) ab}= \sqrt{\frac{s(s - c)}{ab}}\left\{ \sqrt{\left( \frac{s - a}{s - b} \right)\ ab} + \sqrt{\left( \frac{s - b}{s - a} \right)\ ab} \right\}

s(sc){sa+sb(sa)(sb)}=s(sc){2sab(sa)(sb)}=cs(sc)(sa)(sb)=ccotC2\sqrt{s(s - c)}\left\{ \frac{s - a + s - b}{\sqrt{(s - a)(s - b)}} \right\} = \sqrt{s(s - c)}\left\{ \frac{2s - a - b}{\sqrt{(s - a)(s - b)}} \right\} = c\sqrt{\frac{s(s - c)}{(s - a)(s - b)}} = c\cot\frac{C}{2} a=1,a = 1, b=3,b = \sqrt{3}, = 45o.