Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

If (cosx)y=(siny)x(\cos x)^y = (\sin y)^x then dydx\frac{dy}{dx} is:

A

logesinyytanxlogecosx+xcoty\frac{\log_e \sin y - y \tan x}{\log_e \cos x + x \cot y}

B

logesiny+ytanxlogecosx+xcosy\frac{\log_e \sin y + y \tan x}{\log_e \cos x + x \cos y}

C

logesiny+ytanxlogecosxxcoty\frac{\log_e \sin y + y \tan x}{\log_e \cos x - x \cot y}

D

logecosxxcosylogesiny+ytanx\frac{\log_e \cos x - x \cos y}{\log_e \sin y + y \tan x}

Answer

logesinyytanxlogecosx+xcoty\frac{\log_e \sin y - y \tan x}{\log_e \cos x + x \cot y}

Explanation

Solution

We are given:

(cosx)y=(siny)x.(\cos x)^y = (\sin y)^x.

Take the natural logarithm on both sides:

yloge(cosx)=xloge(siny).y \log_e(\cos x) = x \log_e(\sin y).

Differentiate both sides with respect to xx using implicit differentiation:

ddx[yloge(cosx)]=ddx[xloge(siny)].\frac{d}{dx} \left[ y \log_e(\cos x) \right] = \frac{d}{dx} \left[ x \log_e(\sin y) \right].

Using the product rule on both sides:

dydxloge(cosx)+y×ddx[loge(cosx)]=loge(siny)+x×ddx[loge(siny)].\frac{dy}{dx} \log_e(\cos x) + y \times \frac{d}{dx} \left[ \log_e(\cos x) \right] = \log_e(\sin y) + x \times \frac{d}{dx} \left[ \log_e(\sin y) \right].

Simplify each term:

dydxloge(cosx)ytanx=loge(siny)+x×1siny×dydxcosy.\frac{dy}{dx} \log_e(\cos x) - y \tan x = \log_e(\sin y) + x \times \frac{1}{\sin y} \times \frac{dy}{dx} \cos y.

Reorganize terms to isolate dydx\frac{dy}{dx}:

dydxloge(cosx)x×cosysiny×dydx=loge(siny)ytanx.\frac{dy}{dx} \log_e(\cos x) - x \times \frac{\cos y}{\sin y} \times \frac{dy}{dx} = \log_e(\sin y) - y \tan x.

Factor out dydx\frac{dy}{dx}:

dydx[loge(cosx)+xcoty]=loge(siny)ytanx.\frac{dy}{dx} \left[ \log_e(\cos x) + x \cot y \right] = \log_e(\sin y) - y \tan x.

Solve for dydx\frac{dy}{dx}:

dydx=loge(siny)ytanxloge(cosx)+xcoty.\frac{dy}{dx} = \frac{\log_e(\sin y) - y \tan x}{\log_e(\cos x) + x \cot y}.

Thus, the correct answer is:

logesinyytanxlogecosx+xcoty.\boxed{\frac{\log_e \sin y - y \tan x}{\log_e \cos x + x \cot y}}.