Question
Mathematics Question on Trigonometric Identities
If (cosx)y=(siny)x then dxdy is:
logecosx+xcotylogesiny−ytanx
logecosx+xcosylogesiny+ytanx
logecosx−xcotylogesiny+ytanx
logesiny+ytanxlogecosx−xcosy
logecosx+xcotylogesiny−ytanx
Solution
We are given:
(cosx)y=(siny)x.
Take the natural logarithm on both sides:
yloge(cosx)=xloge(siny).
Differentiate both sides with respect to x using implicit differentiation:
dxd[yloge(cosx)]=dxd[xloge(siny)].
Using the product rule on both sides:
dxdyloge(cosx)+y×dxd[loge(cosx)]=loge(siny)+x×dxd[loge(siny)].
Simplify each term:
dxdyloge(cosx)−ytanx=loge(siny)+x×siny1×dxdycosy.
Reorganize terms to isolate dxdy:
dxdyloge(cosx)−x×sinycosy×dxdy=loge(siny)−ytanx.
Factor out dxdy:
dxdy[loge(cosx)+xcoty]=loge(siny)−ytanx.
Solve for dxdy:
dxdy=loge(cosx)+xcotyloge(siny)−ytanx.
Thus, the correct answer is:
logecosx+xcotylogesiny−ytanx.