Solveeit Logo

Question

Question: If \(\cos x=\tan y,\cos y=\tan z,\cos z=\tan x\) , then prove that \(\sin x=\sin y=\sin z=2\sin 18{}...

If cosx=tany,cosy=tanz,cosz=tanx\cos x=\tan y,\cos y=\tan z,\cos z=\tan x , then prove that sinx=siny=sinz=2sin18\sin x=\sin y=\sin z=2\sin 18{}^\circ .

Explanation

Solution

Hint: First, we have to take any one relation to start, so we will take cosx=tany\cos x=\tan y . Now, we have to convert tan function in such a way that we get all the equations and terms in form of sin function only. So, here we will be using some identities like (1+tan2θ=sec2θ)\left( 1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta \right) , secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta } , cotθ=1tanθ\cot \theta =\dfrac{1}{\tan \theta } , cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta } and sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 . Using all these identities, we will get a quadratic equation whose roots we can find using the formula D=b±b24ac2aD=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} . At last we will compare our root with the value of sin18=(514)\sin 18{}^\circ =\left( \dfrac{\sqrt{5}-1}{4} \right) . Thus, we will be able to prove the relation given in question.

Complete step-by-step answer:
Here, first we will take the relation as cosx=tany\cos x=\tan y .
On squaring, both sides of equation, we get as
cos2x=tan2y{{\cos }^{2}}x={{\tan }^{2}}y
Now, we know that (1+tan2θ=sec2θ)\left( 1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta \right) . So, from this substituting value of tan we get,
cos2x=sec2y1\Rightarrow {{\cos }^{2}}x={{\sec }^{2}}y-1
Also, we know that secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta } so, using this relation and on rearranging the terms, we can write equation as
cos2x+1=1cos2y\Rightarrow {{\cos }^{2}}x+1=\dfrac{1}{{{\cos }^{2}}y}
Now, in the question, it is given that cosy=tanz\cos y=\tan z so, we will put tanz\tan z in place of cosy\cos y . So, we get as
cos2x+1=1tan2z\Rightarrow {{\cos }^{2}}x+1=\dfrac{1}{{{\tan }^{2}}z}
Now, we will use the relation cotθ=1tanθ\cot \theta =\dfrac{1}{\tan \theta } so, we will substitute this value in the above equation, we get as
cos2x+1=cot2z\Rightarrow {{\cos }^{2}}x+1={{\cot }^{2}}z
We know that cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta } and sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 so, using this we get the equation as
1sin2x+1=cos2zsin2z\Rightarrow 1-{{\sin }^{2}}x+1=\dfrac{{{\cos }^{2}}z}{{{\sin }^{2}}z}
Again we will be using the identity sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 and placing value of cos2θ{{\cos }^{2}}\theta in the equation, we get
2sin2x=cos2z1cos2z\Rightarrow 2-{{\sin }^{2}}x=\dfrac{{{\cos }^{2}}z}{1-{{\cos }^{2}}z}
Now, we are given that cosz=tanx\cos z=\tan x .So, putting this value we get
2sin2x=tan2x1tan2x\Rightarrow 2-{{\sin }^{2}}x=\dfrac{{{\tan }^{2}}x}{1-{{\tan }^{2}}x}
We will substitute the value of tan as tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } . we will get as
2sin2x=sin2xcos2x1sin2xcos2x\Rightarrow 2-{{\sin }^{2}}x=\dfrac{\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}}{1-\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}}
On further simplifying and cancelling the denominator, we get
2sin2x=sin2xcos2xsin2x\Rightarrow 2-{{\sin }^{2}}x=\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x-{{\sin }^{2}}x}
(2sin2x)(12sin2x)=sin2x\Rightarrow \left( 2-{{\sin }^{2}}x \right)\left( 1-2{{\sin }^{2}}x \right)={{\sin }^{2}}x
(replacing cos2x=1sin2x{{\cos }^{2}}x=1-{{\sin }^{2}}x and taking denominator to LHS)
Now, we will assume sin2x=t{{\sin }^{2}}x=t and on substituting we get equation as
(2t)(12t)=t\Rightarrow \left( 2-t \right)\left( 1-2t \right)=t
24tt+2t2=t\Rightarrow 2-4t-t+2{{t}^{2}}=t
2t26t+2=0\Rightarrow 2{{t}^{2}}-6t+2=0
This we got quadratic equation and roots we can find by using the formula D=b±b24ac2aD=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}
So, on using this i.e. a=2,b=6,c=2a=2,b=-6,c=2 we get roots as
t=6±6242222\Rightarrow t=\dfrac{6\pm \sqrt{{{6}^{2}}-4\cdot 2\cdot 2}}{2\cdot 2}
On further solving, we get
t=6±36164\Rightarrow t=\dfrac{6\pm \sqrt{36-16}}{4}
t=6±204\Rightarrow t=\dfrac{6\pm \sqrt{20}}{4}
t=6±254\Rightarrow t=\dfrac{6\pm 2\sqrt{5}}{4}
t=6+254,6254\Rightarrow t=\dfrac{6+2\sqrt{5}}{4},\dfrac{6-2\sqrt{5}}{4}
No, we know that the range of sin function is [1,1]\left[ -1,1 \right] so, root 6+254>1\dfrac{6+2\sqrt{5}}{4}>1 . So, this will not be root
t=6254\therefore t=\dfrac{6-2\sqrt{5}}{4}
Replacing value of t and we should know that (512)2=6254{{\left( \dfrac{\sqrt{5}-1}{2} \right)}^{2}}=\dfrac{6-2\sqrt{5}}{4} . So, putting the values, we get
sin2x=(512)2\therefore {{\sin }^{2}}x={{\left( \dfrac{\sqrt{5}-1}{2} \right)}^{2}}
sinx=(512)\therefore \sin x=\left( \dfrac{\sqrt{5}-1}{2} \right)
Now, we know that sin18=(514)\sin 18{}^\circ =\left( \dfrac{\sqrt{5}-1}{4} \right) which can be written as sin18=(512)×12\sin 18{}^\circ =\left( \dfrac{\sqrt{5}-1}{2} \right)\times \dfrac{1}{2} .So, we get as 2sin18=(512)2\sin 18{}^\circ =\left( \dfrac{\sqrt{5}-1}{2} \right)
Thus, we can write as sinx=2sin18\sin x=2\sin 18{}^\circ .
Similarly, we can prove siny=2sin18,sinz=2sin18\sin y=2\sin 18{}^\circ ,\sin z=2\sin 18{}^\circ .
Hence, proved.

Note: Be careful while converting all the trigonometric functions like cos, tan, cot, sec into sine functions. One should know all the identities used here otherwise if one sign i.e. negative or positive sign is interchanged the whole answer will be wrong and will not be able to prove the relation given in question. Also, the value of sin18=(514)\sin 18{}^\circ =\left( \dfrac{\sqrt{5}-1}{4} \right) should be known. Rest all part is simple solving quadratic equations.