Solveeit Logo

Question

Question: If \(\cos x \ne - \dfrac{1}{2}\), then solutions of \(\cos x + \cos 2x + \cos 3x = 0\) are: A) \(...

If cosx12\cos x \ne - \dfrac{1}{2}, then solutions of cosx+cos2x+cos3x=0\cos x + \cos 2x + \cos 3x = 0 are:
A) 2nπ±π42n\pi \pm \dfrac{\pi }{4}
B) 2nπ±3π42n\pi \pm \dfrac{{3\pi }}{4}
C) nπ±π4n\pi \pm \dfrac{\pi }{4}
D) 2nπ±π32n\pi \pm \dfrac{\pi }{3}

Explanation

Solution

The given question involves solving a trigonometric equation and finding the value of angle x that satisfies the given equation. There can be various methods to solve a specific trigonometric equation. For solving such questions, we need to have knowledge of basic trigonometric formulae and identities. We will expand the trigonometric ratios involving multiples of angle x using the trigonometric formulae for double and triple angle of cosine.

Complete step by step answer:
In the given problem, we have to solve the trigonometric equation cosx+cos2x+cos3x=0\cos x + \cos 2x + \cos 3x = 0 and find the values of x that satisfy the given equation.
So, In order to solve the given trigonometric equationcosx+cos2x+cos3x=0\cos x + \cos 2x + \cos 3x = 0 , we should use the trigonometric formulae: cos(2x)=2cos2x1\cos \left( {2x} \right) = 2{\cos ^2}x - 1 and cos3x=4cos3x3cosx\cos 3x = 4{\cos ^3}x - 3\cos x.
So, using these formulae, we get,
cosx+(2cos2x1)+(4cos3x3cosx)=0\Rightarrow \cos x + \left( {2{{\cos }^2}x - 1} \right) + \left( {4{{\cos }^3}x - 3\cos x} \right) = 0
Opening the brackets and adding up the like terms, we get,
cosx+2cos2x1+4cos3x3cosx=0\Rightarrow \cos x + 2{\cos ^2}x - 1 + 4{\cos ^3}x - 3\cos x = 0
4cos3x+2cos2x2cosx1=0\Rightarrow 4{\cos ^3}x + 2{\cos ^2}x - 2\cos x - 1 = 0
Now, we group the terms and factor out the common terms.
2cos2x(2cosx+1)(2cosx+1)=0\Rightarrow 2{\cos ^2}x\left( {2\cos x + 1} \right) - \left( {2\cos x + 1} \right) = 0
(2cosx+1)(2cos2x1)=0\Rightarrow \left( {2\cos x + 1} \right)\left( {2{{\cos }^2}x - 1} \right) = 0
Now, using the algebraic identity a2b2=(ab)(a+b){a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right) to factorize, we get,
2(2cosx+1)(cos2x12)=0\Rightarrow 2\left( {2\cos x + 1} \right)\left( {{{\cos }^2}x - \dfrac{1}{2}} \right) = 0
2(2cosx+1)(cosx12)(cosx+12)=0\Rightarrow 2\left( {2\cos x + 1} \right)\left( {\cos x - \dfrac{1}{{\sqrt 2 }}} \right)\left( {\cos x + \dfrac{1}{{\sqrt 2 }}} \right) = 0
Now, we know that if the product of multiple terms is zero, then one of the terms must be zero. So, we get,
Either (2cosx+1)=0\left( {2\cos x + 1} \right) = 0, or (cosx12)=0\left( {\cos x - \dfrac{1}{{\sqrt 2 }}} \right) = 0, or (cosx+12)=0\left( {\cos x + \dfrac{1}{{\sqrt 2 }}} \right) = 0
On simplifying, we get,
cosx=12\Rightarrow \cos x = - \dfrac{1}{2}, cosx=12 \Rightarrow \cos x = \dfrac{1}{{\sqrt 2 }}, cosx=12 \Rightarrow \cos x = - \dfrac{1}{{\sqrt 2 }}
Now, we are given in the question that cosx12\cos x \ne - \dfrac{1}{2}.
So, we have, cosx=12\cos x = \dfrac{1}{{\sqrt 2 }} and cosx=12\cos x = - \dfrac{1}{{\sqrt 2 }}.
Now, we know that cos(π4)=12\cos \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }} and cos(3π4)=12\cos \left( {\dfrac{{3\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}.
So, we have, cosx=cos(π4)\cos x = \cos \left( {\dfrac{\pi }{4}} \right) and cosx=cos(3π4)\cos x = \cos \left( {\dfrac{{3\pi }}{4}} \right).
We know that general solution for trigonometric equation of form cosA=cosB\cos A = \cos B is of form:
A=2nπ±BA = 2n\pi \pm B.
So, we have solution of cosx=cos(π4)\cos x = \cos \left( {\dfrac{\pi }{4}} \right) as x=2nπ±(π4)x = 2n\pi \pm \left( {\dfrac{\pi }{4}} \right) and solution of cosx=cos(3π4)\cos x = \cos \left( {\dfrac{{3\pi }}{4}} \right) as x=2nπ±(3π4)x = 2n\pi \pm \left( {\dfrac{{3\pi }}{4}} \right).
So, we have solution of the equation cosx+cos2x+cos3x=0\cos x + \cos 2x + \cos 3x = 0 as: x=2nπ±(π4)x = 2n\pi \pm \left( {\dfrac{\pi }{4}} \right) and x=2nπ±(3π4)x = 2n\pi \pm \left( {\dfrac{{3\pi }}{4}} \right).
We can combine the solutions of the equations as: x=nπ±(π4)x = n\pi \pm \left( {\dfrac{\pi }{4}} \right). So, we get the final answer as x=nπ±(π4)x = n\pi \pm \left( {\dfrac{\pi }{4}} \right).

Therefore, option (C) is the correct answer.

Note:
The given trigonometric equation can also be solved by using the identity cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right).
So, we have, cos2x+(cos3x+cosx)=0\cos 2x + \left( {\cos 3x + \cos x} \right) = 0
cos2x+2cos(3x+x2)cos(3xx2)=0\Rightarrow \cos 2x + 2\cos \left( {\dfrac{{3x + x}}{2}} \right)\cos \left( {\dfrac{{3x - x}}{2}} \right) = 0
cos2x+2cos2xcosx=0\Rightarrow \cos 2x + 2\cos 2x\cos x = 0
Now, taking the common terms outside the bracket, we get,
cos2x(1+2cosx)=0\Rightarrow \cos 2x\left( {1 + 2\cos x} \right) = 0
Now, Either cos2x=0\cos 2x = 0 or (1+2cosx)=0\left( {1 + 2\cos x} \right) = 0
Now, we know that cosx12\cos x \ne - \dfrac{1}{2}.
So, we have, cos2x=cosπ2=0\cos 2x = \cos \dfrac{\pi }{2} = 0.
cos2x=cosπ2\Rightarrow \cos 2x = \cos \dfrac{\pi }{2}
Now, we know the general solution of the trigonometric equation of the form cosA=cosB\cos A = \cos B is A=2nπ±BA = 2n\pi \pm B.
So, we have, 2x=2nπ±π22x = 2n\pi \pm \dfrac{\pi }{2}
Dividing both sides by two,
x=nπ±π4\Rightarrow x = n\pi \pm \dfrac{\pi }{4}
So, option (C) is the correct answer.