Solveeit Logo

Question

Question: If cos x = k cos(x – 2y), then tan (x - y) tan y is equal to a. \(\dfrac{1+k}{1-k}\) b. \(\dfra...

If cos x = k cos(x – 2y), then tan (x - y) tan y is equal to
a. 1+k1k\dfrac{1+k}{1-k}
b. 1k1+k\dfrac{1-k}{1+k}
c. 2kk+1\dfrac{2k}{k+1}
d. k12k+1\dfrac{k-1}{2k+1}

Explanation

Solution

Hint: In order to solve this question, we need to remember that tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta }, 2sinasinb=cos(ab)cos(a+b)2\sin a\sin b=\cos \left( a-b \right)-\cos \left( a+b \right) and 2cosacosb=cos(a+b)+cos(ab)2\cos a\cos b=\cos \left( a+b \right)+\cos \left( a-b \right). By using these properties we will try to express tan (x - y) tan y in terms of cos x and cos (x – 2y) and then we will use the same to find the answer.

Complete step-by-step answer:

In this question, we have been asked to find the value of tan (x - y) tan y when it is given that cos x = k cos(x – 2y). To solve this question, we will first consider tan (x - y) tan y. And we know that tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta }. So, we can write tan (x - y) tan y as,
sin(xy)cos(xy)×sinycosy\dfrac{\sin \left( x-y \right)}{\cos \left( x-y \right)}\times \dfrac{\sin y}{\cos y}
Now, we will multiply its numerator and denominator by 2. So, we will get,
2sin(xy)siny2cos(xy)cosy\dfrac{2\sin \left( x-y \right)\sin y}{2\cos \left( x-y \right)\cos y}
Now, we know that 2sinasinb=cos(ab)cos(a+b)2\sin a\sin b=\cos \left( a-b \right)-\cos \left( a+b \right) and 2cosacosb=cos(a+b)+cos(ab)2\cos a\cos b=\cos \left( a+b \right)+\cos \left( a-b \right). So, for a = (x - y) and b = y, we can write,
cos(xyy)cos(xy+y)cos(xyy)+cos(xy+y)\dfrac{\cos \left( x-y-y \right)-\cos \left( x-y+y \right)}{\cos \left( x-y-y \right)+\cos \left( x-y+y \right)}
And we can further write it as,
cos(x2y)cos(x)cos(x2y)+cos(x)\dfrac{\cos \left( x-2y \right)-\cos \left( x \right)}{\cos \left( x-2y \right)+\cos \left( x \right)}
Now, we have been given that cos x = k cos(x – 2y). So, we can write the above equation as,
cos(x2y)kcos(x2y)cos(x2y)+kcos(x2y)\dfrac{\cos \left( x-2y \right)-k\cos \left( x-2y \right)}{\cos \left( x-2y \right)+k\cos \left( x-2y \right)}
Now, we can see that cos(x – 2y) can be taken out as common from the numerator and the denominator. So, we get,
cos(x2y)(1k)cos(x2y)(1+k)\dfrac{\cos \left( x-2y \right)\left( 1-k \right)}{\cos \left( x-2y \right)\left( 1+k \right)}
Now, we know that the common terms get cancelled out. So, we can write the value of tan (x - y) tan y as (1k)(1+k)\dfrac{\left( 1-k \right)}{\left( 1+k \right)}.
Therefore, option (b) is the correct answer.

Note: While solving this question, one can start from the given equality by writing it as cosxcos(x2y)=k\dfrac{\cos x}{\cos \left( x-2y \right)}=k. And then we can apply the componendo and dividendo rule, that is, if ab=xy\dfrac{a}{b}=\dfrac{x}{y}, then a+bab=x+yxy\dfrac{a+b}{a-b}=\dfrac{x+y}{x-y}. After this, we can apply the properties, cosa+cosb=2cos(a+b2)cos(ab2)\cos a+\cos b=2\cos \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right) and cosacosb=2sin(a+b2)sin(ba2)\cos a-\cos b=2\sin \left( \dfrac{a+b}{2} \right)\sin \left( \dfrac{b-a}{2} \right). And then, we can get the answer.