Solveeit Logo

Question

Question: If \(\cos x = \frac{1}{\sqrt{1 + t^{2}}}\) and \(\sin y = \frac{t}{\sqrt{1 + t^{2}}}\), then \(\frac...

If cosx=11+t2\cos x = \frac{1}{\sqrt{1 + t^{2}}} and siny=t1+t2\sin y = \frac{t}{\sqrt{1 + t^{2}}}, then dydx\frac{dy}{dx}=

A

– 1

B

1t1+t2\frac{1 - t}{1 + t^{2}}

C

11+t2\frac{1}{1 + t^{2}}

D

1

Answer

1

Explanation

Solution

Obviously x=cos111+t2x = \cos^{- 1}\frac{1}{\sqrt{1 + t^{2}}} and y=sin1t1+t2y = \sin^{- 1}\frac{t}{\sqrt{1 + t^{2}}}

x=tan1tx = \tan^{- 1}t and y=tan1ty = \tan^{- 1}ty=xy = xdydx=1\frac{dy}{dx} = 1.