Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

If cosx=45cos x = -\frac{4}{5}, where x[0,π]x\in\left[0, \pi\right], then the value of cos(x2)cos \left(\frac{x}{2}\right) is equal to

A

110\frac{1}{10}

B

25\frac{2}{5}

C

110\frac{1}{\sqrt{10}}

D

25- \frac{2}{5}

Answer

110\frac{1}{\sqrt{10}}

Explanation

Solution

Given, cosx=45,x[0,π]\cos x=-\frac{4}{5}, x \in[0, \pi]
cosx=2cos2x21\because \cos x=2 \cos ^{2} \frac{x}{2}-1
2cos2x2=1+cosx=145=15\therefore 2 \cos ^{2} \frac{x}{2}=1+\cos x=1-\frac{4}{5}=\frac{1}{5}
cos2x2=110\Rightarrow \cos ^{2} \frac{x}{2}=\frac{1}{10}
cosx2=110\Rightarrow \cos \frac{x}{2}=\frac{1}{\sqrt{10}}
[cosx is negative,  x(π2,π]x2(π4,π2]]\begin{bmatrix}\because \cos x \text { is negative, } \\\ \therefore \quad x \in\left(\frac{\pi}{2}, \pi\right] \Rightarrow \frac{x}{2} \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right]\end{bmatrix}