Solveeit Logo

Question

Question: If \(\cos x + \cos y + \cos\alpha = 0\) and \(\sin x + \sin y + \sin\alpha = 0,\) then \(\cot\left( ...

If cosx+cosy+cosα=0\cos x + \cos y + \cos\alpha = 0 and sinx+siny+sinα=0,\sin x + \sin y + \sin\alpha = 0, then cot(x+y2)=\cot\left( \frac{x + y}{2} \right) =

A

sinα\sin\alpha

B

cosα\cos\alpha

C

cotα\cot\alpha

D

sin(x+y2)\sin\left( \frac{x + y}{2} \right)

Answer

cotα\cot\alpha

Explanation

Solution

Given equation cosx+cosy+cosα=0\cos x + \cos y + \cos\alpha = 0 and

sinx+siny+sinα=0.\sin x + \sin y + \sin\alpha = 0. The given equation may be written a

cosx+cosy=cosα\cos x + \cos y = - \cos\alpha and sinx+siny=sinα.\sin x + \sin y = - \sin\alpha. Therefore

2cos(x+y2)cos(xy2)=cosα2\cos\left( \frac{x + y}{2} \right)\cos\left( \frac{x - y}{2} \right) = - \cos\alpha …..(i)

2sin(x+y2)cos(xy2)=sinα2\sin\left( \frac{x + y}{2} \right)\cos\left( \frac{x - y}{2} \right) = - \sin\alpha …..(ii)

Divide (i) by (ii), we get 2cos(x+y2)cos(xy2)2sin(x+y2)cos(xy2)\frac{2\cos\left( \frac{x + y}{2} \right)\cos\left( \frac{x - y}{2} \right)}{2\sin\left( \frac{x + y}{2} \right)\cos\left( \frac{x - y}{2} \right)}

=cosαsinα= \frac{\cos\alpha}{\sin\alpha}cot(x+y2)=cotα\cot\left( \frac{x + y}{2} \right) = \cot\alpha.