Question
Question: If \(\cos x + \cos y + \cos\alpha = 0\) and \(\sin x + \sin y + \sin\alpha = 0,\) then \(\cot\left( ...
If cosx+cosy+cosα=0 and sinx+siny+sinα=0, then cot(2x+y)=
A
sinα
B
cosα
C
cotα
D
sin(2x+y)
Answer
cotα
Explanation
Solution
Given equation cosx+cosy+cosα=0 and
sinx+siny+sinα=0. The given equation may be written a
cosx+cosy=−cosα and sinx+siny=−sinα. Therefore
2cos(2x+y)cos(2x−y)=−cosα …..(i)
2sin(2x+y)cos(2x−y)=−sinα …..(ii)
Divide (i) by (ii), we get 2sin(2x+y)cos(2x−y)2cos(2x+y)cos(2x−y)
=sinαcosα ⇒ cot(2x+y)=cotα.