Solveeit Logo

Question

Question: If \((\cos x - \sin x)\left( 2\tan x + \frac{1}{\cos x} \right) + 2 = 0\) then \(x =\)...

If (cosxsinx)(2tanx+1cosx)+2=0(\cos x - \sin x)\left( 2\tan x + \frac{1}{\cos x} \right) + 2 = 0 then x=x =

A

2nπ±π32n\pi \pm \frac{\pi}{3}

B

nπ±π3n\pi \pm \frac{\pi}{3}

C

2nπ±π62n\pi \pm \frac{\pi}{6}

D

None of these

Answer

2nπ±π32n\pi \pm \frac{\pi}{3}

Explanation

Solution

Let t=tanx2,t = \tan\frac{x}{2}, and using the formula. We get,

{1tan2x21+tan2x22tanx21+tan2x2}\left\{ \frac { 1 - \tan ^ { 2 } \frac { x } { 2 } } { 1 + \tan ^ { 2 } \frac { x } { 2 } } - \frac { 2 \tan \frac { x } { 2 } } { 1 + \tan ^ { 2 } \frac { x } { 2 } } \right\} {4tanx21tan2x2+1+tan2x21tan2x2}+2=0\left\{ \frac{\mathbf{4}\mathbf{\tan}\frac{\mathbf{x}}{\mathbf{2}}}{\mathbf{1 -}\mathbf{\tan}^{\mathbf{2}}\frac{\mathbf{x}}{\mathbf{2}}}\mathbf{+}\frac{\mathbf{1 +}\mathbf{\tan}^{\mathbf{2}}\frac{\mathbf{x}}{\mathbf{2}}}{\mathbf{1 -}\mathbf{\tan}^{\mathbf{2}}\frac{\mathbf{x}}{\mathbf{2}}} \right\}\mathbf{+ 2 = 0} (1t21+t22t1+t2)\left( \frac { 1 - t ^ { 2 } } { 1 + t ^ { 2 } } - \frac { 2 t } { 1 + t ^ { 2 } } \right) (4t1t2+1+t21t2)+2=0\left( \frac{\mathbf{4t}}{\mathbf{1}\mathbf{-}\mathbf{t}^{\mathbf{2}}}\mathbf{+}\frac{\mathbf{1 +}\mathbf{t}^{\mathbf{2}}}{\mathbf{1}\mathbf{-}\mathbf{t}^{\mathbf{2}}} \right)\mathbf{+ 2 = 0}

\mathbf{\Rightarrow} 3t4+6t3+8t22t3(t2+1)(1t2)=0\frac{\mathbf{3}\mathbf{t}^{\mathbf{4}}\mathbf{+ 6}\mathbf{t}^{\mathbf{3}}\mathbf{+ 8}\mathbf{t}^{\mathbf{2}}\mathbf{-}\mathbf{2t}\mathbf{-}\mathbf{3}}{\mathbf{(}\mathbf{t}^{\mathbf{2}}\mathbf{+ 1)(1}\mathbf{-}\mathbf{t}^{\mathbf{2}}\mathbf{)}}\mathbf{= 0}

Its roots are; t1=13t_{1} = \frac{1}{\sqrt{3}}and t2=13.t_{2} = - \frac{1}{\sqrt{3}}.

Thus the solution of the equation reduces to that of two elementary equations,

tanx2=13,tanx2=13\tan\frac{x}{2} = \frac{1}{\sqrt{3}},\tan\frac{x}{2} = - \frac{1}{\sqrt{3}} \Rightarrow x2=nπ±π6\frac{x}{2} = n\pi \pm \frac{\pi}{6}

x=2nπ±π3,\Rightarrow x = 2n\pi \pm \frac{\pi}{3}, is required solution.