Solveeit Logo

Question

Question: If \(\cos \theta +\sin \theta =\sqrt{2}\cos \theta \), show that \(\cos \theta -\sin \theta =\sqrt{2...

If cosθ+sinθ=2cosθ\cos \theta +\sin \theta =\sqrt{2}\cos \theta , show that cosθsinθ=2sinθ\cos \theta -\sin \theta =\sqrt{2}\sin \theta .

Explanation

Solution

We first take the square value of the equation cosθ+sinθ=2cosθ\cos \theta +\sin \theta =\sqrt{2}\cos \theta . We then use the identities (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab and a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) to break the expression. Putting the value of cosθ+sinθ=2cosθ\cos \theta +\sin \theta =\sqrt{2}\cos \theta , we prove that cosθsinθ=2sinθ\cos \theta -\sin \theta =\sqrt{2}\sin \theta .

Complete step-by-step solution:
It is given that cosθ+sinθ=2cosθ\cos \theta +\sin \theta =\sqrt{2}\cos \theta .
We take square values on both sides of the equation.
So, we get (cosθ+sinθ)2=(2cosθ)2{{\left( \cos \theta +\sin \theta \right)}^{2}}={{\left( \sqrt{2}\cos \theta \right)}^{2}}. We sue the identity of (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab
Simplifying we get
(cosθ+sinθ)2=(2cosθ)2 cos2θ+sin2θ+2cosθsinθ=2cos2θ cos2θsin2θ=2cosθsinθ \begin{aligned} & {{\left( \cos \theta +\sin \theta \right)}^{2}}={{\left( \sqrt{2}\cos \theta \right)}^{2}} \\\ & \Rightarrow {{\cos }^{2}}\theta +{{\sin }^{2}}\theta +2\cos \theta \sin \theta =2{{\cos }^{2}}\theta \\\ & \Rightarrow {{\cos }^{2}}\theta -{{\sin }^{2}}\theta =2\cos \theta \sin \theta \\\ \end{aligned}
Now we use the factorisation identity of a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right).
We get cos2θsin2θ=(cosθ+sinθ)(cosθsinθ){{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\left( \cos \theta +\sin \theta \right)\left( \cos \theta -\sin \theta \right).
So, we get (cosθ+sinθ)(cosθsinθ)=2cosθsinθ\left( \cos \theta +\sin \theta \right)\left( \cos \theta -\sin \theta \right)=2\cos \theta \sin \theta .
We place the values given of cosθ+sinθ=2cosθ\cos \theta +\sin \theta =\sqrt{2}\cos \theta and get
(cosθ+sinθ)(cosθsinθ)=2cosθsinθ (2cosθ)(cosθsinθ)=2cosθsinθ \begin{aligned} & \left( \cos \theta +\sin \theta \right)\left( \cos \theta -\sin \theta \right)=2\cos \theta \sin \theta \\\ & \Rightarrow \left( \sqrt{2}\cos \theta \right)\left( \cos \theta -\sin \theta \right)=2\cos \theta \sin \theta \\\ \end{aligned}
Dividing both sides with 2cosθ\sqrt{2}\cos \theta , we get

& \left( \sqrt{2}\cos \theta \right)\left( \cos \theta -\sin \theta \right)=2\cos \theta \sin \theta \\\ & \Rightarrow \cos \theta -\sin \theta =\dfrac{2\cos \theta \sin \theta }{\sqrt{2}\cos \theta }=\sqrt{2}\sin \theta \\\ \end{aligned}$$ Thus, proved $\cos \theta -\sin \theta =\sqrt{2}\sin \theta $. **Note:** It is important to remember that the condition to eliminate the $\cos \theta $ from both denominator and numerator is $\cos \theta \ne 0$. No domain is given for the variable $x$. The value of $\cos \theta \ne 0$ is essential. The simplified condition will be $x\ne n\pi +\dfrac{\pi }{2},n\in \mathbb{Z}$.