Question
Question: If \(\cos \theta +\sin \theta =\sqrt{2}\cos \theta \), show that \(\cos \theta -\sin \theta =\sqrt{2...
If cosθ+sinθ=2cosθ, show that cosθ−sinθ=2sinθ.
Solution
We first take the square value of the equation cosθ+sinθ=2cosθ. We then use the identities (a+b)2=a2+b2+2ab and a2−b2=(a+b)(a−b) to break the expression. Putting the value of cosθ+sinθ=2cosθ, we prove that cosθ−sinθ=2sinθ.
Complete step-by-step solution:
It is given that cosθ+sinθ=2cosθ.
We take square values on both sides of the equation.
So, we get (cosθ+sinθ)2=(2cosθ)2. We sue the identity of (a+b)2=a2+b2+2ab
Simplifying we get
(cosθ+sinθ)2=(2cosθ)2⇒cos2θ+sin2θ+2cosθsinθ=2cos2θ⇒cos2θ−sin2θ=2cosθsinθ
Now we use the factorisation identity of a2−b2=(a+b)(a−b).
We get cos2θ−sin2θ=(cosθ+sinθ)(cosθ−sinθ).
So, we get (cosθ+sinθ)(cosθ−sinθ)=2cosθsinθ.
We place the values given of cosθ+sinθ=2cosθ and get
(cosθ+sinθ)(cosθ−sinθ)=2cosθsinθ⇒(2cosθ)(cosθ−sinθ)=2cosθsinθ
Dividing both sides with 2cosθ, we get