Solveeit Logo

Question

Question: If \( \cos \theta + \sin \theta = \sqrt 2 \cos \theta \) . Then show, \( \cos \theta - \sin \theta =...

If cosθ+sinθ=2cosθ\cos \theta + \sin \theta = \sqrt 2 \cos \theta . Then show, cosθsinθ=2sinθ\cos \theta - \sin \theta = \sqrt 2 \sin \theta

Explanation

Solution

Hint : The given question deals with basic simplification of trigonometric functions by using some of the simple trigonometric identities such as sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 . Basic algebraic rules and trigonometric identities are to be kept in mind while doing simplification in the given problem.

Complete step-by-step answer :
In the given problem, we are given a trigonometric equation cosθ+sinθ=2cosθ\cos \theta + \sin \theta = \sqrt 2 \cos \theta and we have to prove another result using the given equation.
So, we have, cosθ+sinθ=2cosθ\cos \theta + \sin \theta = \sqrt 2 \cos \theta
Squaring both sides of the equation, we get,
(cosθ+sinθ)2=(2cosθ)2\Rightarrow {\left( {\cos \theta + \sin \theta } \right)^2} = {\left( {\sqrt 2 \cos \theta } \right)^2}
Now, evaluating the square of the binomial term using the algebraic identity (a+b)2=a2+2ab+b2{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2} , we get,
cos2θ+sin2θ+2cosθsinθ=2cos2θ\Rightarrow {\cos ^2}\theta + {\sin ^2}\theta + 2\cos \theta \sin \theta = 2{\cos ^2}\theta
Shifting all the terms to right side of the equation, we get,
2cos2θ(cos2θ+sin2θ+2cosθsinθ)=0\Rightarrow 2{\cos ^2}\theta - \left( {{{\cos }^2}\theta + {{\sin }^2}\theta + 2\cos \theta \sin \theta } \right) = 0
Opening the brackets, we get,
2cos2θcos2θsin2θ2cosθsinθ=0\Rightarrow 2{\cos ^2}\theta - {\cos ^2}\theta - {\sin ^2}\theta - 2\cos \theta \sin \theta = 0
Adding up all the like terms, we get,
cos2θsin2θ2cosθsinθ=0\Rightarrow {\cos ^2}\theta - {\sin ^2}\theta - 2\cos \theta \sin \theta = 0
Adding 2sin2θ2{\sin ^2}\theta on both sides of the equation, we get,
cos2θsin2θ2cosθsinθ+2sin2θ=2sin2θ\Rightarrow {\cos ^2}\theta - {\sin ^2}\theta - 2\cos \theta \sin \theta + 2{\sin ^2}\theta = 2{\sin ^2}\theta
Simplifying the equation further, we get,
cos2θ2cosθsinθ+sin2θ=2sin2θ\Rightarrow {\cos ^2}\theta - 2\cos \theta \sin \theta + {\sin ^2}\theta = 2{\sin ^2}\theta
Now, using the algebraic identity (ab)2=a22ab+b2{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2} , we can condense the left side of the above equation into a perfect square. So, we get,
(cosθsinθ)2=2sin2θ\Rightarrow {\left( {\cos \theta - \sin \theta } \right)^2} = 2{\sin ^2}\theta
Taking square root both sides of the equation, we get,
cosθsinθ=2sinθ\Rightarrow \cos \theta - \sin \theta = \sqrt 2 \sin \theta
So, LHS == RHS.
Hence, cosθsinθ=2sinθ\cos \theta - \sin \theta = \sqrt 2 \sin \theta if we are given cosθ+sinθ=2cosθ\cos \theta + \sin \theta = \sqrt 2 \cos \theta

Note : Given problem deals with Trigonometric functions. Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such types of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations.