Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

If cosθ0\cos \theta \neq 0 and secθ1=(21)tanθ\sec \theta - 1 = ( \sqrt{2} - 1 ) \tan \theta then θ\theta =

A

nπ+π8,nZn \pi + \frac{\pi}{8} , n \in Z

B

2nπ+π4  (or)  2nπ,nZ2n\pi + \frac{\pi}{4} \; (or) \; 2n \pi , n \in Z

C

2nπ+π8,nZ2 n \pi + \frac{\pi}{8} , n \in Z

D

2nππ4  (or)  2nπ,nZ2n\pi - \frac{\pi}{4} \; (or) \; 2n \pi , n \in Z

Answer

2nπ+π4  (or)  2nπ,nZ2n\pi + \frac{\pi}{4} \; (or) \; 2n \pi , n \in Z

Explanation

Solution

If cosθ0\cos \theta \neq 0 and secθ1=(21)tanθ\sec \theta-1=(\sqrt{2}-1) \tan \theta
1cosθcosθ=(21)sinθcosθ\Rightarrow \frac{1-\cos \theta}{\cos \theta}=(\sqrt{2}-1) \frac{\sin \theta}{\cos \theta}
2sin2θ2=(21)2sinθ2cosθ2\Rightarrow 2 \sin ^{2} \frac{\theta}{2}=(\sqrt{2}-1) 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}
\Rightarrow Either sinθ2=0\sin \frac{\theta}{2}=0 or tanθ2=21\tan \frac{\theta}{2}=\sqrt{2}-1
\Rightarrow Either θ2=nπ,nZ\frac{\theta}{2}=n \pi, n \in Z
or θ2=nπ+π8,nZ\frac{\theta}{2}=n \pi+\frac{\pi}{8}, n \in Z
θ=2nπ+π4\Rightarrow \theta=2 n \pi+\frac{\pi}{4}
or 2nπ,nZ2 n \pi,\, n \in Z