Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

If (cosθ+isinθ)(cos2θ+isin2θ)..(cosnθ+isinnθ)=1(\cos \theta+i \sin \theta)(\cos 2 \theta+i \sin 2 \theta) \ldots . .(\cos n \theta+i \sin n \theta)=1, then the value of θ\theta is, mNm \in N

A

2mπn(n+1)\frac{2 m \pi}{n(n+1)}

B

4mπ4 \, m \, \pi

C

4mπn(n+1)\frac{4 m \pi}{ n ( n +1)}

D

mπn(n+1)\frac{m \pi}{n(n+1)}

Answer

4mπn(n+1)\frac{4 m \pi}{ n ( n +1)}

Explanation

Solution

Writing in euler's form, we get
eiθe2iθe3iθeinθ=1e ^{ i \theta} e ^{2 i \theta} e ^{3 i \theta} \ldots e ^{ in \theta}=1
ei(θ+2θ+3θ+nθ=1e ^{ i (\theta+2 \theta+3 \theta+\ldots \,n \theta}=1
ein(n+1)2θ=e2mπe^{i \frac{n(n+1)}{2} \theta}=e^{2 m \pi}
Therefore
n(n+1)2θ=2mπ\frac{ n ( n +1)}{2} \theta=2 m \pi
θ=4mπn(n+1)\theta=\frac{4 m \pi}{n(n+1)}