Solveeit Logo

Question

Question: If \[\cos \theta = \dfrac{3}{5}\]and \[\cos \phi = \dfrac{4}{5}\] where \[\theta \]and \[\phi \]are ...

If cosθ=35\cos \theta = \dfrac{3}{5}and cosϕ=45\cos \phi = \dfrac{4}{5} where θ\theta and ϕ\phi are positive acute angles, then cos(θϕ2)=1+cosθcosϕ+sinθsinϕ2\Rightarrow \cos \left( {\dfrac{{\theta - \phi }}{2}} \right) = \sqrt {\dfrac{{1 + \cos \theta \cos \phi + \sin \theta \sin \phi }}{2}}
A. 72\dfrac{7}{{\sqrt 2 }}
B. 752\dfrac{7}{{5\sqrt 2 }}
C. 75\dfrac{7}{{\sqrt 5 }}
D. 725\dfrac{7}{{2\sqrt 5 }}

Explanation

Solution

Here we have to find the value ofcos(θϕ)/2\cos \left( {\theta - \phi } \right)/2. Since we don’t have any standard formula to find this value, we will derive this term from the existing standard formulas by changing the angles for our convenience. Then, by substituting the values given we will find the required value.
Formula: Some formulas that we need to know to solve this problem:
cos(2x)=2cos2(x)1\cos (2x) = 2{\cos ^2}(x) - 1
cos(AB)=cosAcosB+sinAsinB\cos (A - B) = \cos A\cos B + \sin A\sin B
sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1

Complete step by step answer:
It is given that cosθ=35\cos \theta = \dfrac{3}{5}andcosϕ=45\cos \phi = \dfrac{4}{5} where θ\theta and ϕ\phi are positive acute angles. We aim to find the value ofcos(θϕ)/2\cos \left( {\theta - \phi } \right)/2.
Since we don’t have any standard formula to find this term, we will now derive the required term using the standard formula that we have.
Consider the formula cos(2x)=2cos2(x)1\cos (2x) = 2{\cos ^2}(x) - 1
Now we will modify this formula to get a cosine function with a half-angle.
cos(x)=2cos2(x2)1\Rightarrow \cos (x) = 2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1
Now, let's rearrange this expression for our convenience.
2cos2(x2)=1+cos(x)\Rightarrow 2{\cos ^2}\left( {\dfrac{x}{2}} \right) = 1 + \cos (x)
cos2(x2)=1+cos(x)2\Rightarrow {\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 + \cos (x)}}{2}
cos(x2)=1+cos(x)2\Rightarrow \cos \left( {\dfrac{x}{2}} \right) = \sqrt {\dfrac{{1 + \cos (x)}}{2}}
Thus, we have attained the required cosine formula with a half-angle. Now let us substitutex=θϕx = \theta - \phi .
cos(θϕ2)=1+cos(θϕ)2\Rightarrow \cos \left( {\dfrac{{\theta - \phi }}{2}} \right) = \sqrt {\dfrac{{1 + \cos (\theta - \phi )}}{2}}
Here, we have a termcos(θϕ)\cos (\theta - \phi ). Let us expand this term using the formulacos(AB)=cosAcosB+sinAsinB\cos (A - B) = \cos A\cos B + \sin A\sin B.
Thus, we getcos(θϕ)=cosθcosϕ+sinθsinϕ\cos (\theta - \phi ) = \cos \theta \cos \phi + \sin \theta \sin \phi .
Let’s substitute it in the expressioncos(θϕ2)=1+cos(θϕ)2\cos \left( {\dfrac{{\theta - \phi }}{2}} \right) = \sqrt {\dfrac{{1 + \cos (\theta - \phi )}}{2}} ,
We have the values of \cos \theta $$$$\& $$$$\cos \phi but we don’t have values of\sin \theta $$$$\& $$$$\sin \phi .
Consider the formula sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
Let us modify this formula to get the value ofsinθ\sin \theta .
{\sin ^2}\theta + {\cos ^2}\theta = 1$$$$ \Rightarrow {\sin ^2}\theta = 1 - {\cos ^2}\theta
sinθ=1cos2θ\Rightarrow \sin \theta = \sqrt {1 - {{\cos }^2}\theta }
We already have the value ofcosθ=35\cos \theta = \dfrac{3}{5}. Let’s substitute it in the above expression and simplify it.
sinθ=1(35)2\Rightarrow \sin \theta = \sqrt {1 - {{\left( {\dfrac{3}{5}} \right)}^2}}
sinθ=1(925)\Rightarrow \sin \theta = \sqrt {1 - \left( {\dfrac{9}{{25}}} \right)}
sinθ=25925\Rightarrow \sin \theta = \sqrt {\dfrac{{25 - 9}}{{25}}}
sinθ=1625\Rightarrow \sin \theta = \sqrt {\dfrac{{16}}{{25}}}
sinθ=45\Rightarrow \sin \theta = \dfrac{4}{5}
Now let us find the value of the term sinϕ\sin \phi by changing the angle in the expressionsinθ=1cos2θ\sin \theta = \sqrt {1 - {{\cos }^2}\theta } .
Thus, we getsinϕ=1cos2ϕ\sin \phi = \sqrt {1 - {{\cos }^2}\phi } . Now substitute the value ofcosϕ\cos \phi in this expression and simplify it to get the value ofsinϕ\sin \phi .
sinϕ=1cos2ϕsinϕ=1(45)2\sin \phi = \sqrt {1 - {{\cos }^2}\phi } \Rightarrow \sin \phi = \sqrt {1 - {{\left( {\dfrac{4}{5}} \right)}^2}}
sinϕ=1(1625)\Rightarrow \sin \phi = \sqrt {1 - \left( {\dfrac{{16}}{{25}}} \right)}
sinϕ=251625\Rightarrow \sin \phi = \sqrt {\dfrac{{25 - 16}}{{25}}}
sinϕ=925\Rightarrow \sin \phi = \sqrt {\dfrac{9}{{25}}}
sinϕ=35\Rightarrow \sin \phi = \dfrac{3}{5}
Now we got the values ofcosθ,cosϕ,sinθ&sinϕ\cos \theta ,\cos \phi ,\sin \theta \& \sin \phi . Now let’s substitute it incos(θϕ)=cosθcosϕ+sinθsinϕ\cos (\theta - \phi ) = \cos \theta \cos \phi + \sin \theta \sin \phi .
cos(θϕ)=(35)(45)+(45)(35)\Rightarrow \cos (\theta - \phi ) = \left( {\dfrac{3}{5}} \right)\left( {\dfrac{4}{5}} \right) + \left( {\dfrac{4}{5}} \right)\left( {\dfrac{3}{5}} \right)
cos(θϕ)=1225+1225\Rightarrow \cos (\theta - \phi ) = \dfrac{{12}}{{25}} + \dfrac{{12}}{{25}}
cos(θϕ)=2425\Rightarrow \cos (\theta - \phi ) = \dfrac{{24}}{{25}}
Thus, we got the value ofcos(θϕ)\cos (\theta - \phi ). Let us substitute it incos(θϕ2)=1+cos(θϕ)2\cos \left( {\dfrac{{\theta - \phi }}{2}} \right) = \sqrt {\dfrac{{1 + \cos (\theta - \phi )}}{2}} and simplify it.
cos(θϕ2)=1+(2425)2\cos \left( {\dfrac{{\theta - \phi }}{2}} \right) = \sqrt {\dfrac{{1 + \left( {\dfrac{{24}}{{25}}} \right)}}{2}}
cos(θϕ2)=(25+2425)2\Rightarrow \cos \left( {\dfrac{{\theta - \phi }}{2}} \right) = \sqrt {\dfrac{{\left( {\dfrac{{25 + 24}}{{25}}} \right)}}{2}}
cos(θϕ2)=(4925)2\Rightarrow \cos \left( {\dfrac{{\theta - \phi }}{2}} \right) = \sqrt {\dfrac{{\left( {\dfrac{{49}}{{25}}} \right)}}{2}}
cos(θϕ2)=492×25\Rightarrow \cos \left( {\dfrac{{\theta - \phi }}{2}} \right) = \sqrt {\dfrac{{49}}{{2 \times 25}}}
cos(θϕ2)=752\cos \left( {\dfrac{{\theta - \phi }}{2}} \right) = \dfrac{7}{{5\sqrt 2 }}
Thus, we got the value ofcos(θϕ2)\cos \left( {\dfrac{{\theta - \phi }}{2}} \right).
So, the correct answer is “Option B”.

Note: Here we don’t have a standard for the required expression so we derived it from the existing formula. Also, we have to choose the formula that contains the terms which are available to us and the terms that we require. So that we can find the required value by substituting the values we already have.