Question
Question: If \[\cos \theta = \dfrac{3}{5}\]and \[\cos \phi = \dfrac{4}{5}\] where \[\theta \]and \[\phi \]are ...
If cosθ=53and cosϕ=54 where θand ϕare positive acute angles, then ⇒cos(2θ−ϕ)=21+cosθcosϕ+sinθsinϕ
A. 27
B. 527
C. 57
D. 257
Solution
Here we have to find the value ofcos(θ−ϕ)/2. Since we don’t have any standard formula to find this value, we will derive this term from the existing standard formulas by changing the angles for our convenience. Then, by substituting the values given we will find the required value.
Formula: Some formulas that we need to know to solve this problem:
cos(2x)=2cos2(x)−1
cos(A−B)=cosAcosB+sinAsinB
sin2θ+cos2θ=1
Complete step by step answer:
It is given that cosθ=53andcosϕ=54 where θand ϕare positive acute angles. We aim to find the value ofcos(θ−ϕ)/2.
Since we don’t have any standard formula to find this term, we will now derive the required term using the standard formula that we have.
Consider the formula cos(2x)=2cos2(x)−1
Now we will modify this formula to get a cosine function with a half-angle.
⇒cos(x)=2cos2(2x)−1
Now, let's rearrange this expression for our convenience.
⇒2cos2(2x)=1+cos(x)
⇒cos2(2x)=21+cos(x)
⇒cos(2x)=21+cos(x)
Thus, we have attained the required cosine formula with a half-angle. Now let us substitutex=θ−ϕ.
⇒cos(2θ−ϕ)=21+cos(θ−ϕ)
Here, we have a termcos(θ−ϕ). Let us expand this term using the formulacos(A−B)=cosAcosB+sinAsinB.
Thus, we getcos(θ−ϕ)=cosθcosϕ+sinθsinϕ.
Let’s substitute it in the expressioncos(2θ−ϕ)=21+cos(θ−ϕ),
We have the values of \cos \theta $$$$\& $$$$\cos \phi but we don’t have values of\sin \theta $$$$\& $$$$\sin \phi .
Consider the formula sin2θ+cos2θ=1
Let us modify this formula to get the value ofsinθ.
{\sin ^2}\theta + {\cos ^2}\theta = 1$$$$ \Rightarrow {\sin ^2}\theta = 1 - {\cos ^2}\theta
⇒sinθ=1−cos2θ
We already have the value ofcosθ=53. Let’s substitute it in the above expression and simplify it.
⇒sinθ=1−(53)2
⇒sinθ=1−(259)
⇒sinθ=2525−9
⇒sinθ=2516
⇒sinθ=54
Now let us find the value of the term sinϕby changing the angle in the expressionsinθ=1−cos2θ.
Thus, we getsinϕ=1−cos2ϕ. Now substitute the value ofcosϕ in this expression and simplify it to get the value ofsinϕ.
sinϕ=1−cos2ϕ⇒sinϕ=1−(54)2
⇒sinϕ=1−(2516)
⇒sinϕ=2525−16
⇒sinϕ=259
⇒sinϕ=53
Now we got the values ofcosθ,cosϕ,sinθ&sinϕ. Now let’s substitute it incos(θ−ϕ)=cosθcosϕ+sinθsinϕ.
⇒cos(θ−ϕ)=(53)(54)+(54)(53)
⇒cos(θ−ϕ)=2512+2512
⇒cos(θ−ϕ)=2524
Thus, we got the value ofcos(θ−ϕ). Let us substitute it incos(2θ−ϕ)=21+cos(θ−ϕ) and simplify it.
cos(2θ−ϕ)=21+(2524)
⇒cos(2θ−ϕ)=2(2525+24)
⇒cos(2θ−ϕ)=2(2549)
⇒cos(2θ−ϕ)=2×2549
cos(2θ−ϕ)=527
Thus, we got the value ofcos(2θ−ϕ).
So, the correct answer is “Option B”.
Note: Here we don’t have a standard for the required expression so we derived it from the existing formula. Also, we have to choose the formula that contains the terms which are available to us and the terms that we require. So that we can find the required value by substituting the values we already have.