Solveeit Logo

Question

Question: If \[\cos \theta + \cos 2\theta + \cos 3\theta = 0\], then the general value of \[\theta \] is A....

If cosθ+cos2θ+cos3θ=0\cos \theta + \cos 2\theta + \cos 3\theta = 0, then the general value of θ\theta is
A. 2nπ±(π3)2n\pi \pm (\dfrac{\pi }{3})
B.nπ+(1)n.(2π3)n\pi + {( - 1)^n}.(\dfrac{{2\pi }}{3})
C.nπ+(1)n.(π3)n\pi + {( - 1)^n}.(\dfrac{\pi }{3})
D.2nπ±(2π3)2n\pi \pm (\dfrac{{2\pi }}{3})

Explanation

Solution

Hint : To solve this kind of question please revise the trigonometric formulas and then proceed further with the calculations.
For the solution use the trigonometric formula

cosA+cosB=2cos(A+B2)cos(AB2)  \cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) \

Then apply the formula of writing the general solution.

Complete step-by-step answer :
Given:cosθ+cos2θ+cos3θ=0\cos \theta + \cos 2\theta + \cos 3\theta = 0
When we are solving this type of question, we need to follow the steps provided in the hint part above.
We are given that

cosθ+cos2θ+cos3θ=0 cosθ+cos3θ=cos2θ   \cos \theta + \cos 2\theta + \cos 3\theta = 0 \\\ \cos \theta + \cos 3\theta = - \cos 2\theta \;

We are going to apply the following formula.

cosA+cosB=2cos(A+B2)cos(AB2) 2cos2θcosθ=cos2θ cos2θ[2cosθ+1]=0   \cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) \\\ \Rightarrow 2\cos 2\theta \cos \theta = - \cos 2\theta \\\ \Rightarrow \cos 2\theta [2\cos \theta + 1] = 0 \;

Hence, two cases are there we are going to analyse both the cases one by one.
Case I:

cos2θ θ=nπ±π4.........(1) \Rightarrow \cos 2\theta \\\ \Rightarrow \theta = n\pi \pm \dfrac{\pi }{4}\,\,\,\,.........\,\,\,\,\,(1) \\\

As we know that if
cosθ=cosx\cos \theta = \cos xthen general solution can be written as
θ=2nπ±x\theta = 2n\pi \pm x
So,

cos2θ=0 cos2θ=cosπ2 2θ=2nπ±π2 θ=nπ±π4.........(1) \Rightarrow \cos 2\theta = 0 \\\ \Rightarrow \cos 2\theta = \cos \dfrac{\pi }{2} \\\ \Rightarrow 2\theta = 2n\pi \pm \dfrac{\pi }{2} \\\ \Rightarrow \theta = n\pi \pm \dfrac{\pi }{4}\,\,\,\,.........\,\,\,\,\,(1) \\\

Case II:

2cosθ+1=0 cosθ=12 cosθ=cos(2π3) θ=2nπ±2π3 \Rightarrow 2cos\theta + 1 = 0 \\\ \Rightarrow \cos \theta = \dfrac{{ - 1}}{2} \\\ \Rightarrow \cos \theta = \cos \left( {\dfrac{{2\pi }}{3}} \right) \\\ \Rightarrow \theta = 2n\pi \pm \dfrac{{2\pi }}{3} \\\

So, the correct answer is “Option D”.

Note : In this problem the first thing is take care of the formulas as they are confusing and can create a problem. Second thing is to take care of the general values for the solution of cosθ=12\cos \theta = - \dfrac{1}{2} don’t take any particular solution of this equation.