Solveeit Logo

Question

Question: If \(\cos \theta + \cos 2\theta + \cos 3\theta = 0\) then find the general value of \(\theta \). A...

If cosθ+cos2θ+cos3θ=0\cos \theta + \cos 2\theta + \cos 3\theta = 0 then find the general value of θ\theta .
A.2nπ±(π3)2n\pi \pm \left( {\dfrac{\pi }{3}} \right)
B.nπ+(1)n.(2π3)n\pi + {\left( { - 1} \right)^n}.\left( {\dfrac{{2\pi }}{3}} \right)
C.nπ±(1)n.(π3)n\pi \pm {\left( { - 1} \right)^n}.\left( {\dfrac{\pi }{3}} \right)
D.2nπ±(2π3)2n\pi \pm \left( {\dfrac{{2\pi }}{3}} \right)

Explanation

Solution

Use the trigonometric identity-
cosC+cosD=2cosC+D2cosCD2\cos C + \cos D = 2\cos \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2} to solve the given function. Then use the general solution of for equation cosθ=cosa\cos \theta = \cos a , which is given as-θ=2nπ±a\theta = 2n\pi \pm a where a[0,π]a \in \left[ {0,\pi } \right] and nIn \in I(Integer).

Complete step-by-step answer:
Given cosθ+cos2θ+cos3θ=0\cos \theta + \cos 2\theta + \cos 3\theta = 0
We have to find the general value of θ\theta .
Now we know that
cosC+cosD=2cosC+D2cosCD2\cos C + \cos D = 2\cos \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2}
So we can write eq. (i) as
(cosθ+cos3θ)+cos2θ=0\Rightarrow \left( {\cos \theta + \cos 3\theta } \right) + \cos 2\theta = 0 -- (i)
We will add the terms inside the bracket so that we can get an even number for the value of angle.
On using this formula for the functions inside the bracket we get,
cosθ+cos3θ=2cosθ+3θ2cosθ3θ2\Rightarrow \cos \theta + \cos 3\theta = 2\cos \dfrac{{\theta + 3\theta }}{2}\cos \dfrac{{\theta - 3\theta }}{2}
On solving we get,
cosθ+cos3θ=2cos4θ2cos2θ2\Rightarrow \cos \theta + \cos 3\theta = 2\cos \dfrac{{4\theta }}{2}\cos \dfrac{{ - 2\theta }}{2}
cosθ+cos3θ=2cos2θcos(θ)\Rightarrow \cos \theta + \cos 3\theta = 2\cos 2\theta \cos \left( { - \theta } \right)
Now we know that cos(θ)=cosθ\cos \left( { - \theta } \right) = \cos \theta
cosθ+cos3θ=2cos2θcosθ\cos \theta + \cos 3\theta = 2\cos 2\theta \cos \theta
On substituting this value in eq. (i), we get-
2cos2θcosθ+cos2θ=0\Rightarrow 2\cos 2\theta \cos \theta + \cos 2\theta = 0
On taking cos2θ\cos 2\theta common we get,
cos2θ(2cosθ+1)=0\Rightarrow \cos 2\theta \left( {2\cos \theta + 1} \right) = 0
Now on equating both multiplication terms to zero we get,
cos2θ=0\Rightarrow \cos 2\theta = 0 Or (2cosθ+1)=0\left( {2\cos \theta + 1} \right) = 0
Now on solving cos2θ=0\cos 2\theta = 0 ,
We know that cosθ=0\cos \theta = 0 only when θ=π2\theta = \dfrac{\pi }{2}
So on substituting the value we get,
cos2θ=cosπ2\Rightarrow \cos 2\theta = \cos \dfrac{\pi }{2}
Now we know that the general solution of for equation cosθ=cosa\cos \theta = \cos a is given as-
θ=2nπ±a\theta = 2n\pi \pm a where a[0,π]a \in \left[ {0,\pi } \right] and nIn \in I(Integer).
So on using this relation we get,
2θ=2nπ±π2\Rightarrow 2\theta = 2n\pi \pm \dfrac{\pi }{2}
But we have to find the value of θ\theta so we will divide the whole equation by 22 -
2θ2=2nπ2±π4\Rightarrow \dfrac{{2\theta }}{2} = \dfrac{{2n\pi }}{2} \pm \dfrac{\pi }{4}
On simplifying we get,
θ=nπ±π4\Rightarrow \theta = n\pi \pm \dfrac{\pi }{4} --- (ii)
Now on solving (2cosθ+1)=0\left( {2\cos \theta + 1} \right) = 0
2cosθ=1\Rightarrow 2\cos \theta = - 1
cosθ=12\Rightarrow \cos \theta = - \dfrac{1}{2}
Now we know that cosπ3=12\cos \dfrac{\pi }{3} = \dfrac{1}{2}
So on putting this value we get,
cosθ=cosπ3\Rightarrow \cos \theta = - \cos \dfrac{\pi }{3}
We also know that cosθ=cos(πθ) - \cos \theta = \cos \left( {\pi - \theta } \right)
So using this we get,
cosθ=cos(ππ3)\Rightarrow \cos \theta = \cos \left( {\pi - \dfrac{\pi }{3}} \right)
On simplifying we get,
cosθ=cos(3ππ3)=cos2π3\Rightarrow \cos \theta = \cos \left( {\dfrac{{3\pi - \pi }}{3}} \right) = \cos \dfrac{{2\pi }}{3}
Now we know that the general solution of for equation cosθ=cosa\cos \theta = \cos a is given as-
θ=2nπ±a\theta = 2n\pi \pm a where a[0,π]a \in \left[ {0,\pi } \right] and nIn \in I(Integer).
On using this relation we get,
θ=2nπ±2π3\Rightarrow \theta = 2n\pi \pm \dfrac{{2\pi }}{3} --- (iii)
From eq. (ii) and eq. (iii) we get the general value of θ\theta
Hence the correct answer is D.

Note: Here we have used the trigonometric identity for the first and last term because it will give an even number and not a fraction for the value of angle. But if we use the first two terms or the last two terms we will get a fraction like3θ2\dfrac{{3\theta }}{2} or 5θ2\dfrac{{5\theta }}{2} for the value of angle. This will have made the equation complex and the calculation of the general value of θ\theta will become difficult.