Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If cosT=35\cos \, T = \frac{3}{5} and if sinR=817\sin \, R = \frac{8}{17}, where T is in the fourth quadrant and R is in the second quadrant, then cos (T - R) is equal to:

A

7785\frac{77}{85}

B

1385\frac{13}{85}

C

1385 - \frac{13}{85}

D

7785 - \frac{77}{85}

Answer

7785 - \frac{77}{85}

Explanation

Solution

As given, cos T = 3/5 sin2T=13252=1925\sin^2 T = 1 - \frac{3^2}{5^2} = 1 - \frac{9}{25} So, sinT=1625=45\sin \, T = \frac{16}{25} = - \frac{4}{5} [since T is in IV quad. + ve value is ignored.] Also, given, sin R = 817\frac{8}{17} cos2=182172=164289=225289\Rightarrow \, \cos^2 = 1 - \frac{8^2}{17^2} = 1 - \frac{64}{289} = \frac{225}{289} So, cosR=1517\cos \, R = - \frac{15}{17} [Since R is in II quad. + ve value is ignored] Now, cos (T - R) = cos T cos R + sin T sin R =35×151745×817=45853285= \frac{3}{5} \times\frac{-15}{17} - \frac{4}{5} \times\frac{8}{17} = - \frac{45}{85} - \frac{32}{85} =[45+3285]=7785= - \left[\frac{45+32}{85}\right] = - \frac{77}{85}