Solveeit Logo

Question

Question: If \[\cos P = \dfrac{1}{7}\] and \[\cos Q = \dfrac{{13}}{{14}}\] ,where P and Q both are acute angle...

If cosP=17\cos P = \dfrac{1}{7} and cosQ=1314\cos Q = \dfrac{{13}}{{14}} ,where P and Q both are acute angles. Then the value of P-Q is,
A. 30o{30^o}
B. 60o{60^o}
C 45o{45^o}
D. 75o{75^o}

Explanation

Solution

As we know that by using the trigonometric formulas as cos(PQ)=cosPcosQ+sinPsinQ\cos (P - Q) = \cos P\cos Q + \sin P\sin Q . So, here the given values are cosP\cos P and cosQ\cos Q . You only need to calculate the value of sinP,sinQ\sin P,\sin Q using the formula of sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 .And then substitute it in the given above formula and then take its inverse so the value of angle P-Q is calculated.

Complete step-by-step answer:
As the given values are cosP=17\cos P = \dfrac{1}{7} and cosQ=1314\cos Q = \dfrac{{13}}{{14}} ,
Now, using the formula of sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 .
Calculate the value of sinP,sinQ\sin P,\sin Q .
Hence, sin2Q+cos2Q=1{\sin ^2}Q + {\cos ^2}Q = 1
The value of cos2Q{\cos ^2}Q is calculated as,
\Rightarrow cos2Q=(1314)2{\cos ^2}Q = {\left( {\dfrac{{13}}{{14}}} \right)^2}
On simplifying, we get,
\Rightarrow cos2Q=169196{\cos ^2}Q = \dfrac{{169}}{{196}}
Putting the value in sin2Q+cos2Q=1{\sin ^2}Q + {\cos ^2}Q = 1 , we get,
\Rightarrow sin2Q+169196=1{\sin ^2}Q + \dfrac{{169}}{{196}} = 1
On simplifying, we get,
\Rightarrow sin2Q=1169196{\sin ^2}Q = 1 - \dfrac{{169}}{{196}}
On taking LCM and solving we get,
\Rightarrow sin2Q=196169196=27196{\sin ^2}Q = \dfrac{{196 - 169}}{{196}} = \dfrac{{27}}{{196}}
Now, taking the square root of above equation, we get,
\Rightarrow sinQ=27196=3314\sin Q = \sqrt {\dfrac{{27}}{{196}}} = \dfrac{{3\sqrt 3 }}{{14}}
Now, calculating same for sinP\sin P
The value of cos2P{\cos ^2}P is calculated as,
cos2P=(17)2{\cos ^2}P = {\left( {\dfrac{1}{7}} \right)^2}
On simplifying, we get,
\Rightarrow cos2P=149{\cos ^2}P = \dfrac{1}{{49}}
Putting the value in sin2P+cos2P=1{\sin ^2}P + {\cos ^2}P = 1 , we get,
\Rightarrow sin2P+149=1{\sin ^2}P + \dfrac{1}{{49}} = 1
On simplifying, we get,
\Rightarrow sin2P=1149{\sin ^2}P = 1 - \dfrac{1}{{49}}
On taking LCM and solving we get,
sin2P=49149=4849{\sin ^2}P = \dfrac{{49 - 1}}{{49}} = \dfrac{{48}}{{49}}
Now, taking the square root of above equation, we get,
\Rightarrow sinP=4849=437\sin P = \sqrt {\dfrac{{48}}{{49}}} = \dfrac{{4\sqrt 3 }}{7}
Hence, now putting all the values in the above formula of cos(PQ)=cosPcosQ+sinPsinQ\cos (P - Q) = \cos P\cos Q + \sin P\sin Q , we get,
\Rightarrow cos(PQ)=(17)(1314)+(3314)(437)\cos (P - Q) = \left( {\dfrac{1}{7}} \right)\left( {\dfrac{{13}}{{14}}} \right) + \left( {\dfrac{{3\sqrt 3 }}{{14}}} \right)\left( {\dfrac{{4\sqrt 3 }}{7}} \right)
On calculating the above value,
\Rightarrow cos(PQ)=(1398)+(12×398)\cos (P - Q) = \left( {\dfrac{{13}}{{98}}} \right) + \left( {\dfrac{{12 \times 3}}{{98}}} \right)
On simplifying, we get,
=(1398)+(3698)= \left( {\dfrac{{13}}{{98}}} \right) + \left( {\dfrac{{36}}{{98}}} \right)
Hence, cos(PQ)=(4998)\cos (P - Q) = \left( {\dfrac{{49}}{{98}}} \right)
Which can also be given as, cos(PQ)=12\cos (P - Q) = \dfrac{1}{2} .
As, cos60o=12\cos {60^o} = \dfrac{1}{2}
So we have θ=60o\theta = {60^o}
Hence, PQ=60oP - Q = {60^o}
So, option (B) is the correct answer.

Note: Other trigonometric formulas similar to the one’s which we used to solve this problem are:
cos(P+Q)=cosPcosQsinPsinQ\cos (P + Q) = \cos P\cos Q - \sin P\sin Q
sin(P+Q)=sinPcosQ+cosPsinQ\sin (P + Q) = \sin P\cos Q + \cos P\sin Q
sin(PQ)=sinPcosQcosPsinQ\sin (P - Q) = \sin P\cos Q - \cos P\sin Q
sec2xtan2x=1{\sec ^2}x - {\tan ^2}x = 1
cosec2xcot2x=1co{\sec ^2}x - \operatorname{co} {\operatorname{t} ^2}x = 1
Remember the trigonometric formula such as cos(PQ)=cosPcosQ+sinPsinQ\cos (P - Q) = \cos P\cos Q + \sin P\sin Q . Also remember the correct method of using various values such as sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 . Substitute and use the correct calculation and hence the required answer will be obtained. Remember both the above concepts and apply them and place the value correctly in the above formed equations so that the correct answer can be obtained.