Solveeit Logo

Question

Question: If \(\cos \left( {x - y} \right),\cos x,\cos \left( {x + y} \right)\) are in H.P, then \(\cos x\sec ...

If cos(xy),cosx,cos(x+y)\cos \left( {x - y} \right),\cos x,\cos \left( {x + y} \right) are in H.P, then cosxsec(y2)\cos x\sec \left( {\dfrac{y}{2}} \right)

Explanation

Solution

Since we are given that cos(xy),cosx,cos(x+y)\cos \left( {x - y} \right), \cos x,\cos \left( {x + y} \right) are in HP we can use the relationship b=2aca+cb = \dfrac{{2ac}}{{a + c}} when a , b , c are in HP and then by using the identity cosx+cosy=2[cos(xy2)cos(x+y2)]\cos x + \cos y = 2\left[ {\cos \left( {\dfrac{{x - y}}{2}} \right)\cos \left( {\dfrac{{x + y}}{2}} \right)} \right] we get cosx=cos2xcos2ycos(xy)+cos(x+y)\cos x = \dfrac{{\cos 2x\cos 2y}}{{\cos \left( {x - y} \right) + \cos \left( {x + y} \right)}} and then by using the identity 2cos2x=1+cos2x2{\cos ^2}x = 1 + \cos 2x we get the required value.

Complete step by step solution:
We are given that cos(xy),cosx,cos(x+y)\cos \left( {x - y} \right), \cos x, \cos \left( {x + y} \right) are in HP.
We know that when a , b, c are in H.P then
b=2aca+c\Rightarrow b = \dfrac{{2ac}}{{a + c}}
Using this we get
cosx=2cos(xy)cos(x+y)cos(xy)+cos(x+y)\Rightarrow \cos x = \dfrac{{2\cos \left( {x - y} \right)\cos \left( {x + y} \right)}}{{\cos \left( {x - y} \right) + \cos \left( {x + y} \right)}}
Now let's proceed to solve this using the identities to get the required result
By using the identity cosx+cosy=2[cos(xy2)cos(x+y2)]\cos x + \cos y = 2\left[ {\cos \left( {\dfrac{{x - y}}{2}} \right)\cos \left( {\dfrac{{x + y}}{2}} \right)} \right]
We get our right hand side to be
cosx=cos2xcos2ycos(xy)+cos(x+y)\Rightarrow \cos x = \dfrac{{\cos 2x\cos 2y}}{{\cos \left( {x - y} \right) + \cos \left( {x + y} \right)}}…………….(1)
Now by using he identity 2cos2x=1+cos2x2{\cos ^2}x = 1 + \cos 2x
We get 2cos2x1=cos2x \Rightarrow 2{\cos ^2}x - 1 = \cos 2x
Using this in (1) we get
cosx=(2cos2x1)+(2cos2y1)2cosxcosy cosx=2cos2x1+2cos2y12cosxcosy cosx=2cos2x+2cos2y22cosxcosy  \Rightarrow \cos x = \dfrac{{\left( {2{{\cos }^2}x - 1} \right) + \left( {2{{\cos }^2}y - 1} \right)}}{{2\cos x\cos y}} \\\ \Rightarrow \cos x = \dfrac{{2{{\cos }^2}x - 1 + 2{{\cos }^2}y - 1}}{{2\cos x\cos y}} \\\ \Rightarrow \cos x = \dfrac{{2{{\cos }^2}x + 2{{\cos }^2}y - 2}}{{2\cos x\cos y}} \\\
Cross multiplying we get
2cos2xcosy=2cos2x+2cos2y2 2cos2xcosy2cos2x=2cos2y2 2cos2x(cosy1)=2(cos2y1) 2cos2x(cosy1)=2(cosy+1)(cosy1) cos2x=(cosy+1)  \Rightarrow 2{\cos ^2}x\cos y = 2{\cos ^2}x + 2{\cos ^2}y - 2 \\\ \Rightarrow 2{\cos ^2}x\cos y - 2{\cos ^2}x = 2{\cos ^2}y - 2 \\\ \Rightarrow 2{\cos ^2}x\left( {\cos y - 1} \right) = 2\left( {{{\cos }^2}y - 1} \right) \\\ \Rightarrow 2{\cos ^2}x\left( {\cos y - 1} \right) = 2\left( {\cos y + 1} \right)\left( {\cos y - 1} \right) \\\ \Rightarrow {\cos ^2}x = \left( {\cos y + 1} \right) \\\
Using the identity 2cos2x=1+cos2x2{\cos ^2}x = 1 + \cos 2x
We get 2cos2(y2)=1+cosy2{\cos ^2}\left( {\dfrac{y}{2}} \right) = 1 + \cos y
Using this we get
cos2x=2cos2(y2) cos2xcos2(y2)=2 cos2xsec2(y2)=2 cosxsec(y2)=±2  \Rightarrow {\cos ^2}x = 2{\cos ^2}\left( {\dfrac{y}{2}} \right) \\\ \Rightarrow \dfrac{{{{\cos }^2}x}}{{{{\cos }^2}\left( {\dfrac{y}{2}} \right)}} = 2 \\\ \Rightarrow {\cos ^2}x{\sec ^2}\left( {\dfrac{y}{2}} \right) = 2 \\\ \Rightarrow \cos x\sec \left( {\dfrac{y}{2}} \right) = \pm \sqrt 2 \\\
Hence we get the required value.

Note:
In mathematics, a harmonic progression (or harmonic sequence) is a progression formed by taking the reciprocals of an arithmetic progression. Equivalently, a sequence is a harmonic progression when each term is the harmonic mean of the neighboring terms.
Steps to keep in mind while solving trigonometric problems are

  1. Always start from the more complex side
  2. Express everything into sine and cosine
  3. Combine terms into a single fraction
  4. Use Pythagorean identities to transform between sin2θ\sin^{2} \theta and cos2θ\cos^{2} \theta
  5. Know when to apply double angle formula
  6. Know when to apply addition formula
  7. Good old expand/ factorize/ simplify/ cancelling