Solveeit Logo

Question

Question: If \(\cos \left( {x - y} \right),\cos x\) and \(\cos \left( {x + y} \right)\) are in harmonic progre...

If cos(xy),cosx\cos \left( {x - y} \right),\cos x and cos(x+y)\cos \left( {x + y} \right) are in harmonic progression, then the value of cosxsec(y2)\cos x\sec \left( {\frac{y}{2}} \right) is:
(A) ±2\pm \sqrt 2 (B) ±3\pm \sqrt 3 (C) ±2 \pm 2 (D) ±1 \pm 1

Explanation

Solution

Hint: Use the formula for harmonic mean between two numbers and then simplify the expression.

According to the information given in the question, cos(xy),cosx\cos \left( {x - y} \right),\cos x and cos(x+y)\cos \left( {x + y} \right) are in harmonic progression.
We know that, if three numbers a, b and c are in H.P. then b is the harmonic mean of a and c its value is:
b=2aca+c\Rightarrow b = \frac{{2ac}}{{a + c}}
Using this result for cos(xy),cosx\cos \left( {x - y} \right),\cos x and cos(x+y)\cos \left( {x + y} \right) , we’ll get:
cosx=2cos(xy)cos(x+y)cos(xy)+cos(x+y).....(i)\Rightarrow \cos x = \frac{{2\cos \left( {x - y} \right)\cos \left( {x + y} \right)}}{{\cos \left( {x - y} \right) + \cos \left( {x + y} \right)}} .....(i)
And we also know that, 2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right) . Using this result for the above expression, we’ll get:
cosx=(cos2x+cos2y)2cosxcosy, 2cos2xcosy=cos2x+cos2y \Rightarrow \cos x = \frac{{\left( {\cos 2x + \cos 2y} \right)}}{{2\cos x\cos y}}, \\\ \Rightarrow 2{\cos ^2}x\cos y = \cos 2x + \cos 2y \\\
Using cos2x=2cos2x1\cos 2x = 2{\cos ^2}x - 1 , we’ll get:

2cos2xcosy=2cos2x1+2cos2y1, 2cos2xcosy2cos2x=2cos2y2, 2cos2x(cosy1)=2(cos2y1), cos2x(cosy1)=(cosy+1)(cosy1), cos2x=cosy+1, cos2x=2cos2(y2)1+1,  \Rightarrow 2{\cos ^2}x\cos y = 2{\cos ^2}x - 1 + 2{\cos ^2}y - 1, \\\ \Rightarrow 2{\cos ^2}x\cos y - 2{\cos ^2}x = 2{\cos ^2}y - 2, \\\ \Rightarrow 2{\cos ^2}x\left( {\cos y - 1} \right) = 2\left( {{{\cos }^2}y - 1} \right), \\\ \Rightarrow {\cos ^2}x\left( {\cos y - 1} \right) = \left( {\cos y + 1} \right)\left( {\cos y - 1} \right), \\\ \Rightarrow {\cos ^2}x = \cos y + 1, \\\ \Rightarrow {\cos ^2}x = 2{\cos ^2}\left( {\frac{y}{2}} \right) - 1 + 1, \\\

cos2x=2cos2(y2), \Rightarrow {\cos ^2}x = 2{\cos ^2}\left( {\frac{y}{2}} \right),

cos2xcos2(y2)=2, cos2xsec2(y2)=2, cosxsec(y2)=±2  \Rightarrow \frac{{{{\cos }^2}x}}{{{{\cos }^2}\left( {\frac{y}{2}} \right)}} = 2, \\\ \Rightarrow {\cos ^2}x{\sec ^2}\left( {\frac{y}{2}} \right) = 2, \\\ \Rightarrow \cos x\sec \left( {\frac{y}{2}} \right) = \pm \sqrt 2 \\\

Therefore, the value of cosxsec(y2)\cos x\sec \left( {\frac{y}{2}} \right) is ±2\pm \sqrt 2 . Thus (A) is correct option.
Note:
Harmonic mean between two numbers a and c is always given as:
H.M. =2aca+c = \frac{{2ac}}{{a + c}}.
But in this case, three numbers a, b and c are in harmonic progression, therefore b is the harmonic mean of a and c. So, we get:
H.M. =b = b
b=2aca+c\Rightarrow b = \frac{{2ac}}{{a + c}}
This is what we used in the above question.