Solveeit Logo

Question

Question: If \(\cos \left( \theta -\alpha \right),\cos \left( \theta \right),\cos \left( \theta +\alpha \right...

If cos(θα),cos(θ),cos(θ+α)\cos \left( \theta -\alpha \right),\cos \left( \theta \right),\cos \left( \theta +\alpha \right) are in H.P, then cos(θ)secα2\cos \left( \theta \right)\sec \dfrac{\alpha }{2} is equal to
[a] 2-\sqrt{2}
[b] 2\sqrt{2}
[c] 12\dfrac{1}{2}
[d] 12\dfrac{-1}{2}

Explanation

Solution

Hint: Use the fact that if numbers are in Harmonic progression, then their inverses are in Arithmetic progression. Use the fact that if a,b and c are in H.P, then b=2aca+cb=\dfrac{2ac}{a+c}. Hence prove that cosθ=2(cos(θα)cos(θ+α))cos(θα)+cos(θ+α)\cos \theta =\dfrac{2\left( \cos \left( \theta -\alpha \right)\cos \left( \theta +\alpha \right) \right)}{\cos \left( \theta -\alpha \right)+\cos \left( \theta +\alpha \right)}. Use cosA+cosB=2cos(A+B2)cos(AB2)\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) and cos(AB)cos(A+B)=cos2Asin2B\cos \left( A-B \right)\cos \left( A+B \right)={{\cos }^{2}}A-{{\sin }^{2}}B.

Complete step-by-step solution -
We have cos(θα),cos(θ),cos(θ+α)\cos \left( \theta -\alpha \right),\cos \left( \theta \right),\cos \left( \theta +\alpha \right) are in H.P
We know that if a,b,c are in H.P, then
b=2aca+cb=\dfrac{2ac}{a+c}
Hence we have cosθ=2cos(θα)cos(θ+α)cos(θα)+cos(θ+α)\cos \theta =\dfrac{2\cos \left( \theta -\alpha \right)\cos \left( \theta +\alpha \right)}{\cos \left( \theta -\alpha \right)+\cos \left( \theta +\alpha \right)}
Simplifying the numerator:
We know that cos(A+B)cos(AB)=cos2Asin2B\cos \left( A+B \right)\cos \left( A-B \right)={{\cos }^{2}}A-{{\sin }^{2}}B
Hence, we have
Numerator =2(cos2θsin2α)=2\left( {{\cos }^{2}}\theta -{{\sin }^{2}}\alpha \right)
Simplifying the denominator:
We know that cosA+cosB=2cos(A+B2)cos(AB2)\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)
Put A=θ+αA=\theta +\alpha and B=θαB=\theta -\alpha , we have
cos(θ+α)+cos(θα)=2cosθ+α+θα2cosθ+αθ+α2=2cosθcosα\cos \left( \theta +\alpha \right)+\cos \left( \theta -\alpha \right)=2\cos \dfrac{\theta +\alpha +\theta -\alpha }{2}\cos \dfrac{\theta +\alpha -\theta +\alpha }{2}=2\cos \theta \cos \alpha
Hence, we have
cosθ=2(cos2θsin2α)2cosθcosα\cos \theta =\dfrac{2\left( {{\cos }^{2}}\theta -{{\sin }^{2}}\alpha \right)}{2\cos \theta \cos \alpha }
Multiplying both sides by cosθcosα\cos \theta \cos \alpha , we get
cos2θcosα=cos2θsin2α{{\cos }^{2}}\theta \cos \alpha ={{\cos }^{2}}\theta -{{\sin }^{2}}\alpha
Transposing sin2α{{\sin }^{2}}\alpha on LHS and cos2θcosα{{\cos }^{2}}\theta \cos \alpha on RHS, we get
sin2α=cos2θcos2θcosα{{\sin }^{2}}\alpha ={{\cos }^{2}}\theta -{{\cos }^{2}}\theta \cos \alpha
Taking cos2θ{{\cos }^{2}}\theta common on RHS, we get
sin2α=cos2θ(1cosα){{\sin }^{2}}\alpha ={{\cos }^{2}}\theta \left( 1-\cos \alpha \right)
We know that sinx=2sinx2cosx2\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2} and 1cosx=2sin2x21-\cos x=2{{\sin }^{2}}\dfrac{x}{2}
Hence, we have
(2sinα2cosα2)2=cos2θ(2sin2α2){{\left( 2\sin \dfrac{\alpha }{2}\cos \dfrac{\alpha }{2} \right)}^{2}}={{\cos }^{2}}\theta \left( 2{{\sin }^{2}}\dfrac{\alpha }{2} \right)
Hence, we have
4sin2α2cos2α2=2cos2θsin2α24{{\sin }^{2}}\dfrac{\alpha }{2}{{\cos }^{2}}\dfrac{\alpha }{2}=2{{\cos }^{2}}\theta {{\sin }^{2}}\dfrac{\alpha }{2}
When sinα20,\sin \dfrac{\alpha }{2}\ne 0, we have
2cos2α2=cos2θ2{{\cos }^{2}}\dfrac{\alpha }{2}={{\cos }^{2}}\theta
Multiplying both sides by sec2α2{{\sec }^{2}}\dfrac{\alpha }{2}, we get
cos2θsec2α2=2{{\cos }^{2}}\theta {{\sec }^{2}}\dfrac{\alpha }{2}=2
Hence, we have
cosθsecα2=±2\cos \theta \sec \dfrac{\alpha }{2}=\pm \sqrt{2}
Hence option [a] and [b] are correct.

Note: [1] In this question, we are taking sinα20\sin \dfrac{\alpha }{2}\ne 0 as we want to get information regarding cosθsecα2\cos \theta \sec \dfrac{\alpha }{2}. Nothing can be said about cosθsecα2\cos \theta \sec \dfrac{\alpha }{2}, when sinα2=0\sin \dfrac{\alpha }{2}=0
[2] Aid to memory:
[i] S+S = 2SC
[ii] S-S = 2CS
[iii] C+C = 2CC
[iv] C-C = -2SS
Each one of the above parts helps to memorise two formula
Like from [ii], we have S-S = 2CS.
Hence, we have sin(A)sin(B)=2cosA+B2sinAB2\sin \left( A \right)-\sin \left( B \right)=2\cos \dfrac{A+B}{2}\sin \dfrac{A-B}{2} and 2cosxsiny=sin(x+y)sin(xy)2\cos x\sin y=\sin \left( x+y \right)-\sin \left( x-y \right)
Hence by memorising the above mnemonic, we can memorise 8 different formulae.