Solveeit Logo

Question

Question: If \[\cos \left( {\theta - \alpha } \right)\] , \[\cos \theta \] and \[\cos \left( {\theta + \alpha ...

If cos(θα)\cos \left( {\theta - \alpha } \right) , cosθ\cos \theta and cos(θ+α)\cos \left( {\theta + \alpha } \right) are in HP, then cosθ.secα2\cos \theta .\dfrac{{\sec \alpha }}{2} is equal to
(1) ±2\left( 1 \right){\text{ }} \pm \sqrt 2
(2) ±3\left( 2 \right){\text{ }} \pm \sqrt 3
(3) ±12\left( 3 \right){\text{ }} \pm \dfrac{1}{{\sqrt 2 }}
(4)\left( 4 \right) None of these

Explanation

Solution

Hint : First use harmonic mean formula for the given terms. Then use the cosine addition formulas for further simplifications. This question is all based on trigonometric formulas and identities and at every step you have to check which formula is suitable for that equation. On further solving you will finally get your answer.

Complete step-by-step answer :
As we know that if a, b and c form an H.P. then 1/a, 1/b and 1/c form an A.P. And then 2b=1a+1c\dfrac{2}{b} = \dfrac{1}{a} + \dfrac{1}{c} that is b=2aca+cb = \dfrac{{2ac}}{{a + c}} where b is known as the harmonic mean of a and c.
Similarly, in the question it is given to us that cos(θα)\cos \left( {\theta - \alpha } \right) , cosθ\cos \theta and cos(θ+α)\cos \left( {\theta + \alpha } \right) are in HP . Therefore their harmonic mean will be
cosθ=2cos(θα)cos(θ+α)cos(θα)+cos(θ+α)\cos \theta = \dfrac{{2\cos \left( {\theta - \alpha } \right)\cos \left( {\theta + \alpha } \right)}}{{\cos \left( {\theta - \alpha } \right) + \cos \left( {\theta + \alpha } \right)}} ----------- (i)
Now by using formulas cos(ab)=cosacosb+sinasinb\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b and cos(a+b)=cosacosbsinasinb\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b in the numerator and denominator, the equation (i) becomes
cosθ=2(cosθcosα+sinθsinα)(cosθcosαsinθsinα)(cosθcosα+sinθsinα)+(cosθcosαsinθsinα)\Rightarrow \cos \theta = \dfrac{{2\left( {\cos \theta \cos \alpha + \sin \theta \sin \alpha } \right)\left( {\cos \theta \cos \alpha - \sin \theta \sin \alpha } \right)}}{{\left( {\cos \theta \cos \alpha + \sin \theta \sin \alpha } \right) + \left( {\cos \theta \cos \alpha - \sin \theta \sin \alpha } \right)}}
Now by using identity (a2+b2)=(a+b)(ab)\left( {{a^2} + {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right) in the numerator and by doing addition in the denominator we get
cosθ=2(cos2θcos2αsin2θsin2α)2cosθcosα\Rightarrow \cos \theta = \dfrac{{2\left( {{{\cos }^2}\theta {{\cos }^2}\alpha - {{\sin }^2}\theta {{\sin }^2}\alpha } \right)}}{{2\cos \theta \cos \alpha }}
Now both 22 present in the numerator and the denominator will cancel out and the above expression becomes
cosθ=cos2θcos2αsin2θsin2αcosθcosα\Rightarrow \cos \theta = \dfrac{{{{\cos }^2}\theta {{\cos }^2}\alpha - {{\sin }^2}\theta {{\sin }^2}\alpha }}{{\cos \theta \cos \alpha }}
As we know that cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1 therefore from this sin2θ=1cos2θ{\sin ^2}\theta = 1 - {\cos ^2}\theta .Put this value in the above expression
cosθ=cos2θcos2α(1cos2θ)sin2αcosθcosα\Rightarrow \cos \theta = \dfrac{{{{\cos }^2}\theta {{\cos }^2}\alpha - \left( {1 - {{\cos }^2}\theta } \right){{\sin }^2}\alpha }}{{\cos \theta \cos \alpha }}
Now multiply sin2α{\sin ^2}\alpha with (1cos2θ)\left( {1 - {{\cos }^2}\theta } \right) to open the bracket,
cosθ=cos2θcos2α(sin2αcos2θsin2α)cosθcosα\Rightarrow \cos \theta = \dfrac{{{{\cos }^2}\theta {{\cos }^2}\alpha - \left( {{{\sin }^2}\alpha - {{\cos }^2}\theta {{\sin }^2}\alpha } \right)}}{{\cos \theta \cos \alpha }}
Multiply the bracket term by the minus sign,
cosθ=cos2θcos2α+cos2θsin2αsin2αcosθcosα\Rightarrow \cos \theta = \dfrac{{{{\cos }^2}\theta {{\cos }^2}\alpha + {{\cos }^2}\theta {{\sin }^2}\alpha - {{\sin }^2}\alpha }}{{\cos \theta \cos \alpha }}
Take out cos2θ{\cos ^2}\theta common from the terms cos2θcos2α{\cos ^2}\theta {\cos ^2}\alpha and cos2θsin2α{\cos ^2}\theta {\sin ^2}\alpha ,
cosθ=cos2θ(cos2α+sin2α)sin2αcosθcosα\Rightarrow \cos \theta = \dfrac{{{{\cos }^2}\theta \left( {{{\cos }^2}\alpha + {{\sin }^2}\alpha } \right) - {{\sin }^2}\alpha }}{{\cos \theta \cos \alpha }}
By using trigonometric identity cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1 we get
cosθ=cos2θ(1)sin2αcosθcosα\Rightarrow \cos \theta = \dfrac{{{{\cos }^2}\theta \left( 1 \right) - {{\sin }^2}\alpha }}{{\cos \theta \cos \alpha }}
cosθ=cos2θsin2αcosθcosα\Rightarrow \cos \theta = \dfrac{{{{\cos }^2}\theta - {{\sin }^2}\alpha }}{{\cos \theta \cos \alpha }}
On multiplying cosθcosα\cos \theta \cos \alpha on both sides we get
cosθ.cosθcosα=cos2θsin2α\Rightarrow \cos \theta .\cos \theta \cos \alpha = {\cos ^2}\theta - {\sin ^2}\alpha
We can write the above equation as
cos2θcosα=cos2θsin2α\Rightarrow {\cos ^2}\theta \cos \alpha = {\cos ^2}\theta - {\sin ^2}\alpha
On shifting sin2α{\sin ^2}\alpha to the left hand side and cos2θcosα{\cos ^2}\theta \cos \alpha to the right hand side we get
sin2α=cos2θcos2θcosα\Rightarrow {\sin ^2}\alpha = {\cos ^2}\theta - {\cos ^2}\theta \cos \alpha
Take out cos2θ{\cos ^2}\theta at the right hand side,
sin2α=cos2θ(1cosα)\Rightarrow {\sin ^2}\alpha = {\cos ^2}\theta \left( {1 - \cos \alpha } \right)
By using a formula sinx=2sinx2cosx2\sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2} at the left hand side and by using formula 1cosx=2sin2x21 - \cos x = 2{\sin ^2}\dfrac{x}{2} at the right hand side we get
(2sinα2cosα2)2=cos2θ(2sin2α2)\Rightarrow {\left( {2\sin \dfrac{\alpha }{2}\cos \dfrac{\alpha }{2}} \right)^2} = {\cos ^2}\theta \left( {2{{\sin }^2}\dfrac{\alpha }{2}} \right)
Now open the brackets for further calculation,
4sin2α2cos2α2=2cos2θsin2α2\Rightarrow 4{\sin ^2}\dfrac{\alpha }{2}{\cos ^2}\dfrac{\alpha }{2} = 2{\cos ^2}\theta {\sin ^2}\dfrac{\alpha }{2}
Now shift 2sin2α22{\sin ^2}\dfrac{\alpha }{2} to the left hand side,
4sin2α2cos2α22sin2α2=cos2θ\Rightarrow \dfrac{{4{{\sin }^2}\dfrac{\alpha }{2}{{\cos }^2}\dfrac{\alpha }{2}}}{{2{{\sin }^2}\dfrac{\alpha }{2}}} = {\cos ^2}\theta
So on further solving we get
2cos2α2=cos2θ\Rightarrow 2{\cos ^2}\dfrac{\alpha }{2} = {\cos ^2}\theta
As secant is the reciprocal of cosine. Therefore we can write the above expression as
2.1sec2α2=cos2θ\Rightarrow 2.\dfrac{1}{{{{\sec }^2}\dfrac{\alpha }{2}}} = {\cos ^2}\theta or 2sec2α2=cos2θ\Rightarrow \dfrac{2}{{{{\sec }^2}\dfrac{\alpha }{2}}} = {\cos ^2}\theta
Now the shift the term in the denominator to the right hand side,
2=cos2θ.sec2α2\Rightarrow 2 = {\cos ^2}\theta .{\sec ^2}\dfrac{\alpha }{2}
Or we can write it as
(cosθ.secα2)2=2\Rightarrow {\left( {\cos \theta .\sec \dfrac{\alpha }{2}} \right)^2} = 2
This will be
cosθ.secα2=(2)12\Rightarrow \cos \theta .\sec \dfrac{\alpha }{2} = {\left( 2 \right)^{\dfrac{1}{2}}}
That is
cosθ.secα2=±2\Rightarrow \cos \theta .\sec \dfrac{\alpha }{2} = \pm \sqrt 2
Hence the correct option is (1) ±2\left( 1 \right){\text{ }} \pm \sqrt 2
So, the correct answer is “Option 1”.

Note : Keep in mind the formula of harmonic as it is your first step to start the solution. Remember the trigonometric identities and formulas. Avoid any kind of mistake. After completing the solution again, recheck your steps so that if there is any kind of mistake it will be improved to get the right answer.